Phonetics, phonology and game theory

Gerhard Jäger
Gerhard.Jaeger@uni-bielefeld.de

February 22, 2007
University of Tübingen

Overview

- lingueme-based evolution
- Evolutionary Game Theory
- evolutionary stability
- typology of vowel systems
- exemplar dynamics
- evolutionarily stable vowel systems

Conceptualization of language evolution

prerequisites for evolutionary dynamics

- replication
- variation
- selection

Linguemes

- "any piece of structure that can be independently learned and therefore transmitted from one speaker to another" (Nettle 1999:5)
- Croft (2000) attributes the name lingueme to Haspelmath (Nettle calls them items)
- Examples:
- phonemes
- morphemes
- words
- constructions
- idioms
- collocations
- ...

Linguemes

- Linguemes are replicators
- comparable to genes
- structured configuration of replicators
- Biology: genotype
- Linguistics: utterance

Evolution

Replication

(at least) two modes of lingueme replication:

- acquisition

■ priming (see Jäger and Rosenbach 2005; Croft and Nettle would perhaps not agree)

Evolution

Replication

(at least) two modes of lingueme replication:

- acquisition
- priming (see Jäger and Rosenbach 2005; Croft and Nettle would perhaps not agree)

Variation

- linguistic creativity
- reanalysis
- language contact
- ...

Evolution

Replication

(at least) two modes of lingueme replication:

- acquisition

■ priming (see Jäger and Rosenbach 2005; Croft and Nettle would perhaps not agree)

Variation

Selection

- linguistic creativity
- reanalysis
- language contact
- ...
- social selection
- selection for learnability
- selection for primability

Fitness

learnability/primability

- selection against complexity
- selection against ambiguity
- selection for frequency

Evolutionary stability

- Darwinian evolution predicts ascent towards local fitness maximum
- once local maximum is reached: stability
- only random events (genetic drift, external forces) can destroy stability
- central question for evolutionary model: what are stable states?

Why Game Theory?

■ evolutionary dynamics may be modeled via Evolutionary Game Theory (EGT)

Advantages

■ EGT is abstract enough to subsume both biological and cultural evolution, without conflating them
■ Game Theory as unifying framework for linguistic description

- rationalistic: pragmatics
- evolutionary: typology, language structure

■ factorization of

- dynamics: replicator dynamics (inter alia)
- stability: ESS

Applications

■ Pragmatics: Horn strategies (van Rooij 2004, de Jaegher 2006)

■ Semantics: convexity of semantic categories (Jäger 2006)
■ Syntax: typology of case marking systems (Jäger in press)
■ Phonology: rest of the talk

The evolution of vowel spaces

■ micro-variation in the inventory of vowels between languages: every language is different
■ however, very strong tendencies:

- most languages have five vowels
- (almost) every language has [a], [i] and [u] like vowels
- most vowel inventories are peripheral and symmetric etc.

■ proposal (see for instance de Boer 2001):
Vowel inventories must be evolutionarily stable!

What is a vowel?

Articulation

- speech sound
- voiced
- no constriction of the vowel tract
- vowel quality depends on
- position of tongue
- gesture of the lips
...

What is a vowel?

Acoustics

- periodic sonic wave

Figure: Amplitude of the vowel /u/

What is a vowel?

Acoustics

- spectral analysis:

Figure: Spectrogramm of /a/-/e/-/i/-/o/-/u/

What is a vowel?

Acoustics

- vowel is superposition of discrete harmonic waves:
- fundamental frequency
- formants

Figure: first five formants of /a-e-i-o-u/

What is a vowel?

Acoustics

- first two formants are crucial for identification of vowels

What is a vowel?

Acoustics

- more realistic picture:

Universal tendencies of vowel inventories

■ comparison of vowel inventories in hundreds of languages reveals

■ virtually all languages use the vowels [a], [i], [u]
■ almost all vowels in all languages are peripheral
■ vowel inventories tend to be symmetrical

- ...

Liljencrants and Lindblom (1972)

- vowel systems tend to maximize perceptual distance between vowels
- can be modeled as minimizing potential energy of a vowel system
- energy is proportional to sum of inverse squared distances
- fairly good typological predictions

Survey of 500+ vowel inventories

(from Schwartz et al. 1997, based on the UCLA Phonetic Segment Inventory Database)

Communication via the vowel space

Game theoretic model

■ Signaling game

- types: between 3 and 9 vowel categories
- signals: each point within the two-dimensional (F1/F2) vowel space

Communication via the vowel space

One round of an evolutionary signaling game

- nature picks a vowel category v_{S} and shows it to S
- S picks a point $p_{\text {intend }}$ in the vowel space
- a normally distributed random variable is added to $p_{\text {intend }}$, yielding $p_{\text {prod }}$
- another normally distributed random variable is added to $p_{\text {prod }}$, yielding $p_{\text {perc }}$
- R observes $p_{p e r c}$ and picks a vowel category v_{R}
- if $v_{S}=v_{R}$, both players score a point

Exemplar dynamics

■ empiricist view on language processing/language structure

- popular in functional linguistics (esp. phonology and morphology) and in computational linguistics (aka. "memory-based")

Basic idea

- large amounts of previously encountered instances ("exemplars") of linguems are stored in memory
- very detailed representation of exemplars
- little abstract categorization
- similarity metric between exemplars
- new linguemes are processed in a similarity-based way

Exemplar dynamics: implementation

Sender

- chooses $p_{\text {intend }}$ at random from multiset

$$
\left\{p \mid\left\langle v_{S}, p\right\rangle \in \text { memory }\right\}
$$

- if communication succeeds ($v_{S}=v_{R}$), oldest item in memory is replaced with $\left\langle v_{S}, p_{\text {prod }}\right\rangle$
- otherwise memory remains unchanged

Receiver

- v_{H} is picked such that $\min \left\{d\left(p_{\text {perc }}, p\right) \mid\left\langle v_{H}, p\right\rangle \in\right.$ memory\} is minimized

■ if communication succeeds $\left(v_{S}=v_{R}\right)$, oldest item in memory is replaced by $\left\langle v_{R}, p_{\text {perc }}\right\rangle$

- otherwise memory remains unchanged

Simulations

Setup

- population of 20 agents

■ each agent has a memory of 4000 previous observations per vowel category (initialized with random values)

- 300k iterations of the signaling game
- sender and receiver are picked at random

Inspired by much more sophisticated simulations by Bart de Boer.

Simulation results

■ black dots display average sender strategy for each agent and vowel category)

- colored dots display receiver strategies (colors represent vowel categories)

In detail

Evaluation

- more than half of the typologically dominant patterns correspond to (experimentally determined) ESSs (150 out of 264 in the database)
- five out of seven ESSs correspond to empirically attested vowel systems
■ even the two outliers look natural (symmetric systems with peripheral prototypes)

Theoretical considerations

ESS under replicator dynamics: strict Nash equilibria

- sender strategy: mapping from vowel categories to points in the vowel space
- receiver strategy: categorization of points

Voronoi tesselations

■ suppose receiver strategy R is given and known to the sender: which sender strategy would be the best response to it?

- every signal p has a "prototypical" interpretation: $R(p)$
■ for every vowel category v : S's best choice is to choose the p that minimizes the distance between p and $R(p)$
■ optimal S thus induces a partition of the meaning space

- Voronoi tesselation, induced by the range of R

Open question

- numeric calculation of the ESSs for the human vowel space
- Exemplar Dynamics is similar but not identical to replicator dynamics
- conjecture: as the variance of the random variables goes to 0 , the attractor states of the exemplar dynamics converges towards SNEs

Conclusion

EGT and language evolution

- EGT is well-suited to model utterance based, horizontal cultural language evolution
■ expectation: most languages spend most of the time in ESSs
- possible refinements
- variants of exemplar dynamics (like k-nearest neighbor classification as receiver strategy)
- different similarity metrics (beyond Euclidean distance)
- spatial/network structure between agents

Croft, W. (2000). Explaining Language Change. Longman, New York.
de Boer, B. (2001). The Origin of Vowel Systems. Oxford University Press, Oxford.
Jäger, G. (2006). Convex meanings and evolutionary stability. In A. Cangelosi, A. D. M. Smith, and K. Smith, eds., The Evolution of Language. Proceedings of the 6th International Conference, pp. 139-144. EVOLANG 6, Rome.

Jäger, G. (in press). Evolutionary Game Theory and typology: a case study. To appear in Language.
Jäger, G. and A. Rosenbach (2005). Priming as a driving force in grammaticalization: on the track of unidirectionality. Paper presented at New Reflections on Grammaticalization 3, Santiago de Compostela.

Liljencrants, J. and B. Lindblom (1972). Numerical simulations of vowel quality systems: The role of perceptual contrast.
Language, 48:839-862.
Nettle, D. (1999). Linguistic Diversity. Oxford University Press, Oxford.
Schwartz, J.-L., L.-J. Boe, N. Vallé, and C. Abry (1997). The dispersion-focalization theory of vowel systems. Journal of Phonetics, 25:255-286.
van Rooij, R. (2004). Signalling games select Horn strategies. Linguistics and Philosophy, 27:493-527.

