Evolutionary Game Theory and Linguistics

Gerhard Jäger

Gerhard.Jaeger@uni-bielefeld.de

February 23, 2007

University of Tübingen

Cognitive semantics

Gärdenfors (2000):

- meanings are arranged in conceptual spaces
- conceptual space has geometrical structure
- dimensions are founded in perception/cognition

Cognitive semantics

Gärdenfors (2000):

- meanings are arranged in conceptual spaces
- conceptual space has geometrical structure
- dimensions are founded in perception/cognition

Convexity

A subset C of a conceptual space is said to be *convex* if, for all points x and y in C, all points between x and y are also in C.

Cognitive semantics

Gärdenfors (2000):

- meanings are arranged in conceptual spaces
- conceptual space has geometrical structure
- dimensions are founded in perception/cognition

Convexity

A subset C of a conceptual space is said to be *convex* if, for all points x and y in C, all points between x and y are also in C.

Criterion P

A *natural property* is a convex region of a domain in a conceptual space.

Examples

- spatial dimensions: above, below, in front of, behind, left, right, over, under, between ...
- temporal dimension: early, late, now, in 2005, after, ...
- sensual dimenstions: loud, faint, salty, light, dark, ...
- abstract dimensions: cheap, expensive, important, ...

The naming game

- two players:
 - Sender
 - Receiver
- infinite set of **M**eanings, arranged in a finite metrical space distance is measured by function $d: M^2 \mapsto R$
- finite set of Forms
- sequential game:
 - $\textbf{ 9} \ \, \text{nature picks out } m \in M \ \, \text{according to some probability } \\ \, \text{distribution } p \ \, \text{and reveals } m \ \, \text{to } S \\$
 - $oldsymbol{2}$ S maps m to a form f and reveals f to R
 - $oldsymbol{3}$ R maps f to a meaning m'

The naming game

- Goal:
 - optimal communication
 - ullet both want to minimize the distance between m and m'
- Strategies:
 - \bullet speaker: mapping S from M to F
 - ullet hearer: mapping R from F to M
- Average utility: (identical for both players)

$$u(S,R) = \sum_{m} p_m \times \exp(-d(m, R(S(m)))^2)$$

vulgo: average similarity between speaker's meaning and hearer's meaning

Voronoi tesselations

- suppose R is given and known to the speaker: which speaker strategy would be the best response to it?
 - every form f has a "prototypical" interpretation: R(f)
 - for every meaning m: S's best choice is to choose the f that minimizes the distance between m and R(f)
 - optimal S thus induces a partition of the meaning space
 - \bullet Voronoi tesselation, induced by the range of R

Voronoi tesselation

Okabe et al. (1992) prove the following lemma (quoted from Gärdenfors 2000):

Lemma

The Voronoi tessellation based on a Euclidean metric always results in a partioning of the space into convex regions.

ESSs of the naming game

- ullet best response of R to a given speaker strategy S not as easy to characterize
- general formula

$$R(f) = \arg \max_{m} \sum_{m' \in S^{-1}(f)} p_{m'} \times \exp(-d(m, m')^2)$$

- such a hearer strategy always exists
- linguistic interpretation: R maps every form f to the **prototype** of the property $S^{-1}(f)$

ESSs of the naming game

Lemma

In every ESS $\langle S, R \rangle$ of the naming game, the partition that is induced by S^{-1} on M is the Voronoi tesselation induced by R[F].

ESSs of the naming game

Lemma

In every ESS $\langle S, R \rangle$ of the naming game, the partition that is induced by S^{-1} on M is the Voronoi tesselation induced by R[F].

Theorem

For every form f, $S^{-1}(f)$ is a convex region of M.

Simulations

- two-dimensional circular meaning space
- discrete approximation
- uniform distribution over meanings
- initial stratgies are randomized
- update rule according to (discrete time version of) replicator dynamics

The color space

- physical color space is of infinite dimensionality
- psychological color space has only three dimensions:
 - brightness
 - 4 hue
 - saturation

The color space

- alternative axes (but maintaining dimensionality of three)
 - black-white
 - 2 red-green
 - yellow-blue
- yet another triple of dimensions ("additive"):
 - red
 - green
 - blue
- "subtractive" color space:
 - cyan
 - 2 magenta
 - yellow

Color words

- Berlin and Kay (1969): study of the typology of color words
- subjects with typologically distant native languages
- subjects were asked about prototype and extension of the basic color words of their native language
- English: 11 basic colors

Berlin and Kay's study

Implicational hierarchies

A toy example

- suppose
 - circular two-dimensional meaning space
 - four meanings are highly frequent
 - all other meanings are negligibly rare
- let's call the frequent meanings Red, Green, Blue and Yellow

$$p_i(\mathsf{Red}) > p_i(\mathsf{Green}) > p_i(\mathsf{Blue}) > p_i(\mathsf{Yellow})$$

A toy example

- suppose
 - circular two-dimensional meaning space
 - four meanings are highly frequent
 - all other meanings are negligibly rare
- let's call the frequent meanings Red, Green, Blue and Yellow

$$p_i(\mathsf{Red}) > p_i(\mathsf{Green}) > p_i(\mathsf{Blue}) > p_i(\mathsf{Yellow})$$

Yes, I made this up without empirical justification.

Two forms

- suppose there are just two forms
- only one Strict Nash equilibrium (up to permuation of the forms)
- induces the partition {Red, Blue}/{Yellow, Green}

Three forms

- if there are three forms
- two Strict Nash equilibria (up to permuation of the forms)
- partitions {Red}/{Yellow}/{Green, Blue} and {Green}/{Blue}/{Red, Yellow}
- only the former is stochastically stable (resistent against random noise)

Four forms

- if there are four forms
- one Strict Nash equilibrium (up to permuation of the forms)
- partitions {Red}/{Yellow}/{Green}/{Blue}

Measure terms

Krifka's observations

- measure terms are vague
- some measure terms are ambiguous between different degrees of vagueness
- usually only simple expressions are ambiguous in this way
- complexifying an expression may reduce ambiguitiy

Measure terms

vagueness

95 m: between 94.5 and 95.5 m

ambiguity

- The water has a temperature of 40° : $38^{\circ} < T < 42^{\circ}$
- His body temperature is 40° : $39.95^{\circ} < T < 40.05^{\circ}$

simple and complex expression

His body temperature is 39° : cannot mean $37^{\circ} < T < 41^{\circ}$

complexification

The water has a temperature of exactly 40° : $39.9^{\circ} < T < 40.1^{\circ}$

General considerations

 Suppose the game setup is as before, with arithmetic difference as distance function

ESS

- Sender:
 - meaning space is partitioned into continuous intervals of equal length
 - each interval is correlated with one signal
- Receiver:
 - each signal is mapped to the center of the corresponding interval

General considerations

Costly signaling

- suppose signals incur a cost for both sender and receiver
- modified utility function

$$u(S,R) = \sum_{m} p_m \exp(-(m - R(S(m)))^2) - c(S(m))$$

• intuitive idea:

$$c(\mathsf{thirty}\mathsf{-nine}) > c(\mathsf{forty})$$

etc.

Costly signaling

ESSets

- general pattern as before
- additional constraint: in an ESS (S, R), we have

$$\forall m : S(m) = \arg_f \max[\exp(-(m - R(f))^2) - c(f)]$$

- simultaneous
 - minimizing distance between m and R(S(m))
 - ullet minimizing costs c(S(m))
- in equilibrium (ESSet), distance between m and R(S(m)) need not be minimal

Variable standard of precision

Assessment

- this setup
 - predicts the possibility of vague interpretation: good
 - fails to predict the ambiguity between precise and vague interpretations (or different degrees of vagueness): **bad**

Variable standard of precision

Proposal

- required degree of precision depends on context
- modeling as Bayesian game with different utility function
- both players still have same utility function and know that function

$$u(S,R) = \sum_{m,\sigma} p_{m,\sigma} \exp(-(m - R(S(m)))^2 / \sigma^2) - c(S(m))$$

- high value of σ : precision doesnt matter very much
- low value of σ : precision is more important than economy of expression

An example

- Suppose:
 - just two meanings: 39, 40
 - just two forms: thirty-nine, forty

$$c(\textit{thirty-nine}) - c(\textit{forty}) = \mathbf{c} > 0$$

ullet two standards of precision, σ_1 and σ_2

$$\begin{array}{rcl} \sigma_1 & < & \sigma_2 \\ \exp(-(1^2/\sigma_1^2)) & = & d_1 \\ \exp(-(1^2/\sigma_2^2)) & = & d_2 \\ 1 - d_1 & > & \mathbf{c} \\ 1 - d_2 & < & \mathbf{c} \\ \forall m, \sigma : p_{m,\sigma} & = & .25 \end{array}$$

An example

Intuitive characterization

- two standards of precision
- utility loss under vague interpretation is $1 d_i$
- utility loss due to usage of more complex expression is c
- under σ_1 precision is more important
- under σ_2 economy of expression is more important
- uniform probability distribution over states

meanings/signals

 $\begin{array}{ccc} S & R \\ 39 & \textit{thirty-nine} & 39 \\ 40 & \textit{forty} & 40 \end{array}$

strategies

- $S_1/R_1:$ •—•
- $S_2/R_2: X$
- $S_3/R_3:$
- $S_4/R_4: 7$

Extensive form

Utility matrices

σ_1					
	••	•ו		•	
	••	<u> </u>	•—•	· ·	
•—•	$1 - \frac{c}{2}$	$d_1 - \frac{c}{2}$	$\frac{1+d_1-c}{2}$	$\frac{1+d_1-c}{2}$	
X	$d_1 - \frac{c}{2}$	$1 - \frac{c}{2}$	$\frac{1+d_1-c}{2}$	$\frac{1+d_1-c}{2}$	
	$\frac{1+d_1}{2}$	$\frac{1+d_1}{2}$	$\frac{1+d_1}{2}$	$\frac{1+d_1}{2}$	
<i>.</i>	$\frac{1+d_1}{2} - c$	$\frac{1+d_1}{2} - c$	$\frac{1+d_1}{2} - c$	$\frac{1+d_1}{2} - c$	

σ_2				
	••	•~•	• •	.
	•—•	•^•	•—>•	<u> </u>
•	$1 - \frac{c}{2}$	$d_2 - \frac{c}{2}$	$\frac{1+d_2-c}{2}$	$\frac{1+d_2-c}{2}$
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$d_2 - \frac{c}{2}$	$1 - \frac{c}{2}$	$\frac{1+d_2-c}{2}$	$\frac{1+d_2-c}{2}$
	$\frac{1+d_2}{2}$	$\frac{1+d_2}{2}$	$\frac{1+d_2}{2}$	$\frac{1+d_2}{2}$
7.	$\frac{1+d_2}{2}-c$	$\frac{1+d_2}{2} - c$	$\frac{1+d_2}{2} - c$	$\frac{1+d_2}{2} - c$

31/37

Results

Evolutionary stability

- first subgame (σ_1 ; precision is important): two ESS
 - S_1/R_1
 - S_2/R_2
- in either case, both expressions have a precise meaning and are interpreted exactly as intended
- second subgame (σ_2 ; economy of expression is important): one ESSet
 - ullet consists of S_3 and all mixed strategies of R
- Bayesian game:
 - two ESSets
 - any combination of ESSets of the two sub-games

Asymmetric information

Assessment

- this setup
- predicts that
 - all number words receive a precise interpretation if precision is important
 - only short number words are used and receive a vague interpretation if economy is important
- good
- with larger dictionary prediction that there is no correlation between the interpretation of words between the different subgames
- for instance:
 - forty could mean 40 for σ_1 and $\{28...32\}$ for σ_2
- bad

Asymmetric information

Modified information sets

- idea
 - S knows σ , but
 - \bullet R doesn't
- ullet then R's interpretation of a word cannot depend on σ

Strategy space

- Sender strategies:
 - functions from pairs (m, σ) to signals
 - in the example: $4 \times 4 = 16$ strategies, as before
- Receiver's strategies
 - functions from signals to meanings
 - in the example: only four such functions (as in the first version of the example)

Extensive form

old game:

Extensive form

new game:

Asymmetric information

ESS

- resulting game has only two ESSs
 - ESS 1:
 - S: (___, ___)
 - R: ___
 - ESS 2:
 - S: (X, <u>)</u>)
 - R: X
- in either case
 - R always assumes precise interpretation
 - ullet S always chooses correct word if σ is low
 - $\bullet\,$ S always chooses short word if σ is high

Loose ends

Open questions

- notion of ESS/ESSet only make sense for finite strategy space
- can results be maintained if meaning space is really continuous?
- ullet S's signal gives information about value of σ
- ullet perhaps R's guess about value of σ should enter the utility function
- would explain why
 - it can be rational for S to use excessively complex phrases like exactly fourty and short phrases like fourty synonymously
 - exactly fourty can only be interpreted precisely, while fourty is ambiguous

