Evolutionary Game Theory and Linguistics

Gerhard Jäger

Gerhard.Jaeger@uni-bielefeld.de

February 23, 2007

University of Tübingen

Don't talk to strangers:

- idealized assumption of standard EGT:
 - populations are infinite
 - each pair of individuals is equally likely to interact with each other
- Stochastic EGT gives up the first assumption
- What happens if you give up second assumption as well?

- one possible instantiation:
 - individuals are arranged in a spatial structure
 - every individual only interacts with its immediate neighbors

Suppose we have

- set of positions pos
- irreflexive neighbourhood relation n among pos
- strategy function st maps positions and time points random variable over strategies
- density function d maps positions/time points to positive real number
- fitness function f assigns fitness value (positive real) to positions/time points
- Z(a, t): normalization variable; accumulated weighted fitness of the neighborhood of a at time t

$$f(a, t + 1) = \sum_{b: n(a,b)} u(st(a, t), st(b, t))$$

$$d(a, t + 1) = d(a, t) \times f(a, t + 1)$$

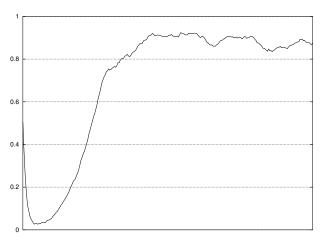
$$P(st(a, t + 1) = i) = \frac{1}{Z(a, t + 1)} \times \sum_{\substack{(b \in \{x: n(a,x)\} \cup \{a\}) \cap \{x: st(x,t) = i\}}} d(b, t + 1) \times f(b, t + 1)$$

$$Z(a, t + 1) = \sum_{b \in \{x: n(a,x)\} \cup \{a\}} d(b, t + 1) \times f(b, t + 1)$$

Spatial structure

- two-dimensional chessboard like structure
- neighborhood: adjacent fields; each field has eight neighbors
- torus shape: upper and lower boundaries are neighbors, and likewise left and right boundaries

Spatial Prisoner's dilemma

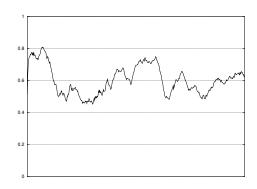

one version of Prisoner's dilemma:

	C	D
C	5,5	1,6
D	6,1	2,2

- standard EGT: one ESS: (D, D)
- spatial EGT:
 - only interaction with neighbors
 - neighbors are likely to be "related" to each other
 - increased likelihood of interactions between individuals with identical strategies
 - favors strategies with high utility against itself, even if not NE

Spatial Prisoner's dilemma

• proportion of *C*-players in a spatial Prisoner's dilemma:


Spatial Hawks and Doves

- spatial evolution generally favors intra-strategy altruism
- should favor Doves over Hawks

	Н	D
Н	1	7
D	2	3

Spatial Hawks and Doves

- development of the proportion of hawks in spatial HaD
- proportion of doves is most of the time higher than in the ESS (20%)

Game of communication

- row strategies:
 - T: talk
 - S: remain silent
- column strategies
 - A: pay attention
 - I: ignore
- only one ESS: (*S*, *I*)

	А	I
Т	1,2	0,1
S	1,0	1,1

Spatial game of communication

• symmetrized game of communication:

	(T,A)	(T,I)	(S,A)	(S,I)
(T,A)	3	2	1	0
(T,I)	2	1	2	1
(<i>S</i> , <i>A</i>)	3	3	1	1
(S,I)	2	2	2	2

ullet "cooperative" strategy pair (T, A) forms stable clusters