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Gerhard Jäger & Jens Michaelis

University of Potsdam

{jaeger,michael}@ling.uni-potsdam.de

– p.1



Basic Categorial Grammar

� developed by Bar-Hillel (1953)
� based on earlier work by Ajdukiewicz and others
� close correspondence between syntax and semantics
� fundamental notions: complete and incomplete expression
� also inherent in type theory and earlier versions of categorial

grammar
� new contribution: directionality of syntactic incompleteness

A/B ... I need a B to my right to become an A
A \ B ... I need a B to my left to become an A

Note: Type Logical CG uses different notational convention!
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Basic Categorial Grammar

example

Walter, Kevin : np

snores : s \ np

knows : (s \ np)/np

s

np

Walter

s \ np

snores

s

np

Walter

s \ np

(s \ np)/np

knows

np

Kevin
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Basic Categorial Grammar

categories can be complex:
� faintly : (s \ np) \ (s \ np)

� Kevin snores faintly

� s

np

Kevin

s \ np

s \ np

snores

(s \ np) \ (s \ np)

faintly
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Basic Categorial Grammar

recursion s

np

np/n

The

n

n/n

old

n

n/n

old

n

n/n

old

n

n/n

old

n

man

s \ np

snores
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Basic Categorial Grammar

syntactic and semantic composition
� (ideally:) syntactic and semantic incompleteness coincide
� syntactic composition concurs with semantic function application

s

FAINTLY’(λx.CALL’(x, KEVIN’))WALTER’

np

WALTER’

Walter

s \ np

FAINTLY’(λx.CALL’(x, KEVIN’))

s \ np

(λx.CALL’(x, KEVIN’))

(s \ np)/np

λyx.CALL’(x, y)

called

np

KEVIN’

Kevin

(s \ np) \ (s \ np)

FAINTLY’

faintly
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Basic Categorial Grammar

Definition 1 (Categories)
Let a finite set B of basic categories be given. CAT(B) is the
smallest set such that

1. B ⊆ CAT(B)

2. If A,B ∈ CAT(B), then A/B ∈ CAT(B)

3. If A,B ∈ CAT(B), then A \ B ∈ CAT(B)

4. Nothing else is in CAT(B)

Definition 2 ((Uninterpreted) Lexicon) Let an alphabet Σ and a
finite set B of basic categories be given. A BCG-lexicon LEX is a
finite relation between Σ+ (the set of non-empty strings over Σ) and
CAT(B).
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Basic Categorial Grammar

Rules of BCG

(x/y) y → x

y (x \ y) → x
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Basic Categorial Grammar

Definition 3 (BCG Grammar) Let an alphabet Σ be given. A BCG
grammar G is a triple 〈B,LEX,S〉, where B is a finite set (the basic
categories), LEX is a finite sub-relation of Σ+ × CAT(B), and S is a
finite subset of CAT(B) (the designated categories).

Definition 4 Let G = 〈B,LEX,S〉 be a BCG grammar over the
alphabet Σ. Then α ∈ L(G) iff there are a1, . . . , an ∈ Σ+,
A1, . . . , An ∈ CAT(B), and S ∈ S such that

1. α = a1 . . . an,

2. For all i such that 1 ≤ i ≤ n : 〈ai, Ai〉 ∈ LEX, and

3. A1, . . . , An →∗ S.
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Basic Categorial Grammar

Relation to CFGs
� weakly equivalent
� embedding BCG ; CFG is trivial (only finitely many instances of

the BCG rule schemata are needed for a given grammar; can be
interpreted as CFG rules)

� embedding CFG ; BCG difficult to prove (proved in Bar-Hillel,
Gaifman and Shamir 1960)

� embedding is straightforward though once you have the
Greibach Normal Form lemma
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Basic Categorial Grammar

Semantics
� semantic type of an expression is homomorphic image of its

syntactic category

Definition 5 (Category to type correspondence)
Let τ be a function from CAT(B) to TYPE. τ is a correspondence
function iff

τ(A \ B) = τ(A/B) = 〈τ(A), τ(B)〉

Definition 6 ((Interpreted) Lexicon) Let an alphabet Σ, a finite set
B of basic categories and a correspondence function τ be given. An
interpreted BCG-lexicon LEX is a finite sub-relation of

⋃

A∈CAT(B)

(Σ+ × {A} × EXPτ(A))

– p.11



Basic Categorial Grammars

semantically annotated rules

(x/y) : α, y : β → x : α(β)

y : β, (x \ y) : α → x : α(β)
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Combinators

coordination
� coordination is polymorphic

(1) John walked and Bill talked

(2) John walked and talked

(3) John loves and plays soccer
� general coordination scheme:

x and x → x

provided x is a Boolean category
� no syntax without semantics:

x : α and x : β → x : α ∩ β
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Combinators

quantifiers

(1) John walked and John talked ` John walked and talked

(2) Some man walked and some man talked 6` Some man walked
and talked

quantifiers cannot have type e, i.e. category np
good hypothesis: quantifiers have category s/(s \ np) and type
〈〈e, t〉, t〉

(4) John and somebody walked

Names and quantifiers are conjoinable
� Montague: names also have category s/(s \ np)
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Combinators

� alternative solution (Partee and Rooth 1983, among others):
Category of expressions can be changed in syntax!

� what is needed here:
x → y/(y \ x)

� called Type Lifting (abbreviated T>)
� usually restricted to few instances
� no syntax without semantics:

x : α → y/(y \ x) : λw.w(α)
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Combinators

coordination between names and quantifiers

John
lex

J’ : np
T>

λx.xJ’ : s/(s \ np)

somebody
lex

λP.∃xPx : s/(s \ np)
conj

λP.(P J’) ∧ ∃xPx : s/(s \ np)

walked
lex

WALK’ : s \ np
A>

(WALK’J’) ∧ ∃xWALK’x : s
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Combinators

right node raising
� coordination sometimes applies to apparent non-constituents

(5) John likes and Bill detests broccoli
� application of coordination scheme requires that John likes has

a single Boolean category
� solution: (forward) function composition B>

(x/y) (y/z) → (x/z)

� name suggests semantics:

(x/y) : α, (y/z) : β → (x/z) : λw.α(β(w))
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Combinators

� combination of lifting and composition gives desired result

John
lex

J’
np

T>

λx.xJ’
s/(s \ np)

likes
lex

LIKE’
(s \ np)/np

B>

λy.LIKE’yJ’
s/np

Bill
lex

B’
np

T>

λx.xB’
s/(s \ np)

detests
lex

DETEST’
(s \ np)/np

B>

λy.DETEST’yB’
s/np

Conj
λz.(LIKE’zJ’) ∧ (DETEST’zB’)

s/np

broccoli
lex

BROCCOLI’
np

A>

(LIKE’BROCCOLI’J’) ∧ (DETEST’BROCCOLI’B’)
s

– p.18



Combinators

Left node raising
� similar “non-constituent coordination” also possible in other

direction

(6) John introduced Bill to Sue and Harry to Sally.
� analogous treatment requires mirror images of combinators T>

and B>

� backward type lifting (T<)

x : α → y \ (y/x) : λw.w(α)

� backward function composition (B<)

x \ y : α, z \ x : β → z \ y : λw.β(α(w))

– p.19



Combinators

John
lex

J’
np

introduced
lex

INTRODUCE’
tvp/np

Bill
lex

B’
np

T<

λy.yB’
tvp \ (tvp/np)

to
lex

λx.x

pp/np

Sue
lex

SUE’
np

A>

SUE’
pp

T<

λw.wSUE’
vp \ (vp/pp)

B<

λu.(uSUE’B’)
vp \ (tvp/np)

Harry
lex

H’
np

T<
λy.yH’ : tvp \ (tvp/np)

to
lex

λx.x

pp/np

Sally
lex

SA’
np

A>
SA’ : pp

T<

λw.wSA’
vp \ (vp/pp)

B<

λu.(uSA’H’)
vp \ (tvp/np)

Conj
λuv.(uSUE’B’v) ∧ (uSA’H’v)

vp \ (tvp/np)
A<

λv.(INTRODUCE’SUE’B’v) ∧ (INTRODUCE’SA’H’v)

vp
A<

(INTRODUCE’SUE’B’J’) ∧ (INTRODUCE’SA’H’J’)
s

tvp abbreviates s \ np/pp

vp abbreviates s \ np
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Combinators

long distance movement

man who ate the apples
apples that the man ate

� lexical entry for relative pronoun

who, which, that := n \ n/(s \ np) : λQP.P (x) ∧ Q(x)
who(m), which, that := n \ n/(s/np) : λQP.P (x) ∧ Q(x)
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Combinators

man
lex

MAN’
n

who
lex

λQP.P (x) ∧ Q(x)

n \ n/(s \ np)

ate
lex

EAT’
s \ np/np

the
lex

λPιxP (x)

np/n

apples
lex

APPLES’
n

A>

ιxAPPLES’
np

A>

ATE’ιx.APPLES’x
s \ np

A>

λPx.Px ∧ ATE’(ιy.APPLES’y)x

n \ n
A<

λx.MAN’x ∧ ATE’(ιy.APPLES’y)x

n
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Combinators

apples
lex

APPLES’
n

that
lex

λQP.P (x) ∧ Q(x)

n \ n/(s/np)

the
lex

λPιxP (x)

np/n

man
lex

MAN’
n

A>

ιxMAN’
np

T>

s/(s \ np)

λR.R(ιx.MAN’x)

ate
lex

EAT’
s \ np/np

B>

s/np

λx.EAT’x(ιy.MAN’y)
A>

λPx.Px ∧ ATE’x(ιy.MAN’y)

n \ n
A<

λx.APPLES’x ∧ ATE’(ιy.MAN’y)x

n
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Combinators

relativization
� object relativization in principle unbounded
� can be modeled via repeated forward function composition

a man [who]n\n/(s\np) [(suspects that Chapman) will eat the apples]s\np

the apples [that]n\n/(s/np) [Keats (suspects that Chapman) will eat]s\np
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Combinators

ECP effects
� extraction of embedded subjects impossible

a man who [I think that]s/s [Keats likes]s/np

*a man who [I think that]s/s [likes Keats]s\np

� likewise, adjuncts are extraction islands

*a book that Peter died without knowing
� neither extraction can be derived with forward or backward

composition and type lifting
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Combinators

non-peripheral extraction
� object gap need not be located at right periphery

packages [which I sent and which you carried]n\n/pp to Philadelphia

people [whom I begged and whom you persuaded]n\n/vp to take a
bath

� requires more complex lexical categories for relative pronoun,
like

n \ n/pp/(s/pp/np)

� can be schematized to

n \ n/$/(s/$/np)

for a small set of possible values of $

� values of $ may be sequences of arguments
– p.26



Combinators

� also requires generalization of B:

x/y : α, y/z1/ · · · /zn : β → x/z1/ · · · /zn : λw1 · · ·wn.α(β(wn) · · · (w1))

x\y1\· · ·\yn : α, z\x : β → z\y1 · · ·\yn : λw1 · · ·wn.β(α(wn) · · · (w1))
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Combinators

Pied piping
� extracted element need not be an wh-phrase
� can also be a complex NP/PP containing a wh-phrase

a report the cover of which Keats (expects that Chapman) will design

a subject on which Keats (expects that Chapman) will speak

a report the height of the lettering on the covers of which the
government prescribes

� lexical entry for relative pronoun in pied-piping construction:

n \ n/(s/np) \ (np/np)

λfPQx.Qx ∧ P (fx)
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Combinators

� argument passing (via composition) inside the pied-piped phrase
works as in previous examples

� therefore same island constraints for both kinds of unbounded
dependencies

*a report [[a man who knows the woman that wrote]np/np

which]n\n/(s/np) Keats met
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Combinators

Heavy NP Shift and Crossed Composition

� order of post-verbal material in English rather free

John put the book on the table

John put on the table an extremely heavy book which seemed to be
made of stone

� sometimes considered an extra-grammatical phenomenon
� participates in coordination though

John [put on the table]s\np/np and [opened]s\np/np an extremely heavy

book which seemed to be made of stone
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Combinators

� can be handled with crossed backward function composition
B

×
<

x/y, z \ x → z/y

� semantics as in harmonic (=non-crossed) function composition
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Combinators

John
lex

np

put
lex

s \ np/pp/np

on
lex

pp/np

the
lex

np/n

table
lex

n
A>

np
A>

pp
T<

s \ np \ (s \ np/pp)
B

×
<s \ np/np

Principia
lex

np
A>

s \ np
A<

s
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Combinators

� effect of B
×
<:

� “forward looking gaps” (/np) can originate from any linear
position

� “backward looking gaps” (\np) must be left peripheral
� seems to cover subject/object asymmetry in English correctly
� crossed forward composition would have mirror-image like

effect
x/y, y \ z → x \ z
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Combinators

man
lex

n

who
lex

n \ n/(s \ np)

I think that
...

s/s

likes Keats
...

s \ np
B

×
>s \ np

A>
n \ n

A<
n
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Combinators

Dutch

� recall the Dutch/Swiss German cross-serial dependencies

dat Jan Marie Pieter Arabisch laat zien schrijven
THAT JAN MARIE PIETER ARABIC LET SEE WRITE

‘that Jan let Marie see Pieter write Arabic’
� can be dealt with using a generalized version of B

×
>

x/y, y \ z/w → x \ z/w
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Combinators

� Lexion
� Jan, Marie, Pieter, Arabisch := np
� laat := s \ np \ np/vpi
� zien := vpi \ np/vpi
� schrijven := vpi \ np
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Combinators

Jan
lex

np

Marie
lex

np

Pieter
lex

np

Arabisch
lex

np

laat
lex

s \ np \ np/vpi

zien
lex

vpi \ np/vpi
B

×
>s \ np \ np \ np/vpi

schrijven
lex

vpi \ np
B

×
>

s \ np \ np \ np \ np
A<

s \ np \ np \ np
A<

s \ np \ np
A<

s \ np
A<

s
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Combinators

� how do we prevent derivation of the (ungrammatical)

dat Jan Marie laat Pieter zien Arabisch schrijven
� solution:

� availability of combinatorial rules is cross-linguistically
parameterized

� English has B
×
< while Dutch has B

×
> etc.

� furthermore, instances of combinatorial rules may be
restricted for a particular language

� Dutch: forward application

(x/y), y → x

is only licit if the first atom in y 6= vpi
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Conclusion

� main features of CCG
� strong connection between syntax and semantics
� strictly compositional
� mono-stratal
� (almost) lexicalized

� differences to other versions of Categorial Grammar
� language specific parametrization of combinatory rules
� language specific parametrization of rule instances

– p.39
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