An introduction to mildly context sensitive grammar formalisms

- Combinatory Categorial Grammar

Gerhard Jäger \& Jens Michaelis
University of Potsdam
\{jaeger,michael\}@ling.uni-potsdam.de

Basic Categorial Grammar

■ developed by Bar-Hillel (1953)

- based on earlier work by Ajdukiewicz and others
- close correspondence between syntax and semantics
- fundamental notions: complete and incomplete expression
- also inherent in type theory and earlier versions of categorial grammar
- new contribution: directionality of syntactic incompleteness
$A / B \ldots$ I need a B to my right to become an A
$A \backslash B \ldots$... I need a B to my left to become an A
Note: Type Logical CG uses different notational convention!

Basic Categorial Grammar

example

$$
\begin{aligned}
\text { Walter, Kevin } & : n p \\
\text { snores } & : s \backslash n p \\
\text { knows } & :(s \backslash n p) / n p
\end{aligned}
$$

Walter snores

Basic Categorial Grammar

categories can be complex:

■ faintly: $(s \backslash n p) \backslash(s \backslash n p)$

- Kevin snores faintly

Basic Categorial Grammar

recursion

Basic Categorial Grammar

syntactic and semantic composition

■ (ideally:) syntactic and semantic incompleteness coincide

- syntactic composition concurs with semantic function application

Basic Categorial Grammar

Definition 1 (Categories)

Let a finite set B of basic categories be given. CAT(B) is the smallest set such that

1. $\mathbf{B} \subseteq \mathbf{C A T}(\mathbf{B})$
2. If $A, B \in \mathbf{C A T}(\mathbf{B})$, then $A / B \in \mathbf{C A T}(\mathbf{B})$
3. If $A, B \in \mathbf{C A T}(\mathbf{B})$, then $A \backslash B \in \mathbf{C A T}(\mathbf{B})$
4. Nothing else is in $\operatorname{CAT}(\mathrm{B})$

Definition 2 ((Uninterpreted) Lexicon) Let an alphabet Σ and a finite set B of basic categories be given. A BCG-lexicon LEX is a finite relation between Σ^{+}(the set of non-empty strings over Σ) and CAT(B).

Basic Categorial Grammar

Rules of BCG

$$
\begin{aligned}
(x / y) y & \rightarrow x \\
y(x \backslash y) & \rightarrow x
\end{aligned}
$$

Basic Categorial Grammar

Definition 3 (BCG Grammar) Let an alphabet Σ be given. A BCG grammar G is a triple $\langle\mathrm{B}, \mathrm{LEX}, \mathrm{S}\rangle$, where B is a finite set (the basic categories), LEX is a finite sub-relation of $\Sigma^{+} \times \mathbf{C A T}(\mathbf{B})$, and S is a finite subset of $\mathbf{C A T}(\mathbf{B})$ (the designated categories).

Definition 4 Let $\mathbf{G}=\langle\mathbf{B}, \mathbf{L E X}, \mathbf{S}\rangle$ be a BCG grammar over the alphabet Σ. Then $\alpha \in L(\mathbf{G})$ iff there are $a_{1}, \ldots, a_{n} \in \Sigma^{+}$, $A_{1}, \ldots, A_{n} \in \mathbf{C A T}(\mathbf{B})$, and $S \in \mathbf{S}$ such that

1. $\alpha=a_{1} \ldots a_{n}$,
2. For all i such that $1 \leq i \leq n:\left\langle a_{i}, A_{i}\right\rangle \in \mathbf{L E X}$, and
3. $A_{1}, \ldots, A_{n} \rightarrow * S$.

Basic Categorial Grammar

Relation to CFGs

- weakly equivalent
- embedding BCG \leadsto CFG is trivial (only finitely many instances of the BCG rule schemata are needed for a given grammar; can be interpreted as CFG rules)
■ embedding CFG \leadsto BCG difficult to prove (proved in Bar-Hillel, Gaifman and Shamir 1960)
- embedding is straightforward though once you have the Greibach Normal Form Iemma

Basic Categorial Grammar

Semantics

- semantic type of an expression is homomorphic image of its syntactic category

Definition 5 (Category to type correspondence)

 Let τ be a function from CAT(B) to TYPE. τ is a correspondence function iff$$
\tau(A \backslash B)=\tau(A / B)=\langle\tau(A), \tau(B)\rangle
$$

Definition 6 ((Interpreted) Lexicon) Let an alphabet Σ, a finite set B of basic categories and a correspondence function τ be given. An interpreted BCG-lexicon LEX is a finite sub-relation of

$$
\bigcup_{A \in \mathbf{C A T}(\mathbf{B})}\left(\Sigma^{+} \times\{A\} \times \mathbf{E X P}_{\tau(A)}\right)
$$

Basic Categorial Grammars

semantically annotated rules

$$
\begin{aligned}
(x / y): \alpha, y: \beta & \rightarrow x: \alpha(\beta) \\
y: \beta,(x \backslash y): \alpha & \rightarrow x: \alpha(\beta)
\end{aligned}
$$

Combinators

coordination

- coordination is polymorphic
(1) John walked and Bill talked
(2) John walked and talked
(3) John loves and plays soccer
- general coordination scheme:

$$
x \text { and } x \rightarrow x
$$

provided x is a Boolean category
■ no syntax without semantics:

$$
x: \alpha \text { and } x: \beta \rightarrow x: \alpha \cap \beta
$$

Combinators

quantifiers

(1) John walked and John talked \vdash John walked and talked
(2) Some man walked and some man talked \vdash Some man walked and talked
quantifiers cannot have type e, i.e. category $n p$
good hypothesis: quantifiers have category $s /(s \backslash n p)$ and type $\langle\langle e, t\rangle, t\rangle$
(4) John and somebody walked

Names and quantifiers are conjoinable
■ Montague: names also have category $s /(s \backslash n p)$

■ alternative solution (Partee and Rooth 1983, among others): Category of expressions can be changed in syntax!
■ what is needed here:

$$
x \rightarrow y /(y \backslash x)
$$

■ called Type Lifting (abbreviated $\mathbf{T}_{>}$)
■ usually restricted to few instances
■ no syntax without semantics:

$$
x: \alpha \rightarrow y /(y \backslash x): \lambda w \cdot w(\alpha)
$$

Combinators

coordination between names and quantifiers

$\frac{\frac{\frac{\text { John }}{\mathrm{J}^{\prime}: n p} \text { lex }}{\lambda x . x \mathrm{~J}^{\prime}: s /(s \backslash n p)} \mathbf{T}_{>} \frac{\text { somebody }}{\lambda P . \exists x P x: s /(s \backslash n p)} \text { lex } \text { conj } \frac{\text { walked }}{\text { WALK' }: s \backslash n p}}{\frac{\lambda P .\left(P \mathrm{~J}^{\prime}\right) \wedge \exists x P x: s /(s \backslash n p)}{\left(\text { WALK' }^{\prime}\right) \wedge \exists x \text { WALK' } x: s}}$ A \quad >

Combinators

right node raising
■ coordination sometimes applies to apparent non-constituents
(5) John likes and Bill detests broccoli

■ application of coordination scheme requires that John likes has a single Boolean category
■ solution: (forward) function composition $B_{>}$

$$
(x / y)(y / z) \rightarrow(x / z)
$$

■ name suggests semantics:

$$
(x / y): \alpha,(y / z): \beta \rightarrow(x / z): \lambda w \cdot \alpha(\beta(w))
$$

Combinators

- combination of lifting and composition gives desired result

$$
\begin{aligned}
& \frac{\text { John }}{J^{\prime}} l e x \quad \frac{\text { Bill }}{\mathrm{B}^{\prime}} l e x
\end{aligned}
$$

Combinators

Left node raising

- similar "non-constituent coordination" also possible in other direction
(6) John introduced Bill to Sue and Harry to Sally.

■ analogous treatment requires mirror images of combinators $\mathbf{T}_{>}$ and $B_{>}$

- backward type lifting ($\mathrm{T}_{<}$)

$$
x: \alpha \rightarrow y \backslash(y / x): \lambda w \cdot w(\alpha)
$$

- backward function composition ($B_{<}$)

$$
x \backslash y: \alpha, z \backslash x: \beta \rightarrow z \backslash y: \lambda w \cdot \beta(\alpha(w))
$$

(INTRODUCE'SUE'B'J') $\wedge($ INTRODUCE'SA'H'J')
S

tvp abbreviates $s \backslash n p / p p$

$v p$ abbreviates $s \backslash n p$

Combinators

long distance movement

man who ate the apples apples that the man ate

- lexical entry for relative pronoun

$$
\begin{gathered}
\text { who, which, that }:=n \backslash n /(s \backslash n p): \lambda Q P . P(x) \wedge Q(x) \\
\text { who }(m) \text {, which, that }:=n \backslash n /(s / n p): \lambda Q P . P(x) \wedge Q(x)
\end{gathered}
$$

Combinators

Combinators

$$
\begin{aligned}
& \frac{n p}{s /(s \backslash n p)} \mathbf{T}_{>} \quad \frac{\text { ate }}{\mathrm{EAT}^{\prime}} \text { lex } \\
& \frac{\text { that }}{\lambda Q P . P(x) \wedge Q(x)} \text { lex } \\
& \frac{\text { apples }}{\text { APPLES' }} \text { lex } \frac{n \backslash n /(s / n p)}{\lambda P x . P x \wedge \text { ATE' }^{\prime} x\left(\iota y . \mathrm{MAN}^{\prime} y\right)} \mathbf{A}_{>} \\
& n \backslash n \\
& \lambda x . \text { APPLES' }^{\prime} x \wedge \text { ATE }^{\prime}\left(\iota y . \text { MAN }^{\prime} y\right) x
\end{aligned}
$$

Combinators

relativization

■ object relativization in principle unbounded

- can be modeled via repeated forward function composition
a man $[\text { who }]_{n \backslash n /(s \backslash n p)}\left[(\text { suspects that Chapman) will eat the apples }]_{s \backslash n p}\right.$
the apples [that] $]_{\Uparrow \backslash n /(s / n p)}$ [Keats (suspects that Chapman) will eat] $]_{s \backslash n p}$

Combinators

ECP effects

■ extraction of embedded subjects impossible a man who $[1 \text { think that }]_{s / s}[\text { Keats likes }]_{s / n p}$
*a man who $[I \text { think that }]_{s / s}[\text { likes Keats }]_{s \backslash n p}$
■ likewise, adjuncts are extraction islands
*a book that Peter died without knowing

- neither extraction can be derived with forward or backward composition and type lifting

Combinators

non-peripheral extraction

■ object gap need not be located at right periphery
packages [which I sent and which you carried] $]_{n \backslash n / p p}$ to Philadelphia
people [whom I begged and whom you persuaded $]_{n \backslash n / v p}$ to take a bath

- requires more complex lexical categories for relative pronoun, like

$$
n \backslash n / p p /(s / p p / n p)
$$

- can be schematized to

$$
n \backslash n / \$ /(s / \$ / n p)
$$

for a small set of possible values of $\$$
■ values of $\$$ may be sequences of arguments

Combinators

- also requires generalization of B :

$$
\begin{aligned}
& x / y: \alpha, y / z_{1} / \cdots / z_{n}: \beta \rightarrow x / z_{1} / \cdots / z_{n}: \lambda w_{1} \cdots w_{n} \cdot \alpha\left(\beta\left(w_{n}\right) \cdots\left(w_{1}\right)\right. \\
& x \backslash y_{1} \backslash \cdots \backslash y_{n}: \alpha, z \backslash x: \beta \rightarrow z \backslash y_{1} \cdots \backslash y_{n}: \lambda w_{1} \cdots w_{n} \cdot \beta\left(\alpha\left(w_{n}\right) \cdots\left(w_{1}\right)\right)
\end{aligned}
$$

Combinators

Pied piping

■ extracted element need not be an wh-phrase

- can also be a complex NP/PP containing a wh-phrase
a report the cover of which Keats (expects that Chapman) will design
a subject on which Keats (expects that Chapman) will speak
a report the height of the lettering on the covers of which the government prescribes

■ lexical entry for relative pronoun in pied-piping construction:

$$
\left.\begin{array}{rl}
n \backslash n /(s / n p) \backslash(n p / n p) \\
& \lambda f P Q x \cdot Q x
\end{array}\right) P(f x)
$$

Combinators

■ argument passing (via composition) inside the pied-piped phrase works as in previous examples

■ therefore same island constraints for both kinds of unbounded dependencies
> *a report [[a man who knows the woman that wrote] $]_{n p / n p}$ which] ${ }_{n \backslash n /(s / n p)}$ Keats met

Combinators

Heavy NP Shift and Crossed Composition

■ order of post-verbal material in English rather free
John put the book on the table

John put on the table an extremely heavy book which seemed to be made of stone

- sometimes considered an extra-grammatical phenomenon
- participates in coordination though

John [put on the table] $]_{s \backslash n p / n p}$ and [opened] $]_{s \backslash n p / n p}$ an extremely heavy book which seemed to be made of stone

Combinators

- can be handled with crossed backward function composition B \times

$$
x / y, z \backslash x \rightarrow z / y
$$

■ semantics as in harmonic (=non-crossed) function composition

Combinators

Combinators

- effect of $\mathrm{B}_{<}^{\times}$:
- "forward looking gaps" (/np) can originate from any linear position
- "backward looking gaps" ($\backslash n p$) must be left peripheral
- seems to cover subject/object asymmetry in English correctly
- crossed forward composition would have mirror-image like effect

$$
x / y, y \backslash z \rightarrow x \backslash z
$$

Combinators

Dutch

- recall the Dutch/Swiss German cross-serial dependencies
dat Jan Marie Pieter Arabisch laat zien schrijven that Jan Marie Pieter Arabic let see write 'that Jan let Marie see Pieter write Arabic'
■ can be dealt with using a generalized version of $\mathbf{B}_{>}^{\times}$

$$
x / y, y \backslash z / w \rightarrow x \backslash z / w
$$

Combinators

- Lexion
- Jan, Marie, Pieter, Arabisch $:=n p$
- laat $:=s \backslash n p \backslash n p / v p i$
- zien $:=v p i \backslash n p / v p i$
- schrijven $:=v p i \backslash n p$

Combinators

Combinators

■ how do we prevent derivation of the (ungrammatical)
dat Jan Marie laat Pieter zien Arabisch schrijven

- solution:
- availability of combinatorial rules is cross-linguistically parameterized
- English has $\mathrm{B}_{<}^{\times}$while Dutch has $\mathrm{B}_{>}^{\times}$etc.
- furthermore, instances of combinatorial rules may be restricted for a particular language
- Dutch: forward application

$$
(x / y), y \rightarrow x
$$

is only licit if the first atom in $y \neq v p i$

- main features of CCG
- strong connection between syntax and semantics
- strictly compositional
- mono-stratal
- (almost) lexicalized

■ differences to other versions of Categorial Grammar

- language specific parametrization of combinatory rules
- language specific parametrization of rule instances

