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Overview

� CCGs and TAGs generate the same class of string languages
� can also be described by Head Grammars or Linear Indexed

Grammars
� proper subset of the class of languages that is described by

(set-local) Multi-component TAGs or Linear Context-Free
Rewriting Systems

� proof: circular inclusion CCG → LIG → TAG → CCG
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Overview

� Plan for this unit:
� Indexed Grammars
� Linear Indexed Grammars
� CCG → LIG
� LIG → TAG
� TAG → CCG
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Indexed Grammars

� generalization of CFGs
� strictly stronger than TAGs/CCGs
� introduced by Aho to handle variable binding in programming

languages
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Indexed Grammars

Definition:
An IG, G, is denoted by

G = (VN , VT , VS , S, P )

where
� VN is a finite set of nonterminals
� VT is a finite set of terminals
� VS is a finite set of stack symbols
� VN , VT and VS are mutually disjoint
� S ∈ VN is the start symbol, and
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Indexed Grammars

� P is a finite set of productions, having the following form.

A[· · x] → α1 . . . αn

where x ∈ V ∗
S , and for each 1 ≤ i ≤ n, αi = A[· · y], αi = A[z], or

αi = w where A ∈ VN , w ∈ V ∗
T , and y, z ∈ V ∗

S .

Notational convention:
� [· · l] ... arbitrary stack with l as top symbol
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Indexed Grammars

Comments:
� fixed number of symbols can be popped from LHS stack
� stacks of non-terminals on RHS:

� fixed sized stack, or
� unbounded stack from LHS, with a fixed number of symbols

pushed on it
� notion of derivation (→∗

G) is as in CFGs
� language L(G) generated by the LIG G

L(G) = {w ∈ V ∗
T |S[] →∗

G w}
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Indexed Grammars

� example for a language that is generated by a LIG but not by a
TAG/CCG:

anbncndnen

� LIG that generates it:
� VN = {S,A,B,C,D,E}
� VT = {a, b, c, d, e}
� VS = {i}
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Indexed Grammars

� P :

S[··] → S[· · i]

S[· · ·] → A[· · ·]B[· · ·]C[· · ·]D[· · ·]E[· · ·]

A[· · ii] → aA[· · i]

A[i] → a

B[· · ii] → bB[· · i]

B[i] → b

C[· · ii] → cC[· · i]

C[i] → c

D[· · ii] → dD[· · i]

D[i] → d

E[· · ii] → eE[· · i]

E[i] → e
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Linear Indexed Grammar

� introduced by Gazdar (1985) for linguistic purposes
� proper restriction of IGs
� crucial innovation:

� only one non-terminal on the RHS inherits the stack from the
RHS

� dependencies between unbounded branches of a tree are not
possible in LIGs
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Linear Indexed Grammars

Example:
� previous example is not a LI language
� the following is a LI language though:

anbncndn

� LIG that generates it:
� VN = {S, T}
� VT = {a, b, c, d}
� VS = {i}
� P :

S[··] → aS[· · i]d

S[··] → T [··]

T [· · i] → bT [··]c

T [] → ε – p.11



From CCG to LIG

� first proved by Weir (1988)
� assumes particular format of CCG

� no type lifting (can be done in the lexicon where needed)
� only combinators: function application and (possibly mixed)

function composition
� applicability of combinators can be restricted to certain

categories
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Formal definition of CCG

A CCG G is denoted by (VT , VN , S, f, R), where
� VT is a finite set of terminals (lexical items),
� VN is a finite set of nonterminals (atomic categories)
� VN and VT are disjoint,
� S is a distinguished member of VN ,
� f is a function that maps elements of VT ∪ {ε} to finite subsets of

C(VN), the set of categories, where
� VN ⊆ C(VN), and if c1, c2 ∈ C(VN), then (c1/c2) ∈ C(VN) and

(c1\c2) ∈ C(VN)

� R is a finite set of combinatory rules.
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Formal definition of CCG

� four types of combinatory rules
� x, y, z1, ... variables over C(VN), |i is a variable over {/,\}

1. forward application
(x/y) y → x

2. backward application

y (x\y) → x

3. generalized forward composition: for some n ≥ 1:

(x/y) (. . . (y|1z1)2 . . . |nzn) → (. . . (x1|1z1)|2 . . . |nzn)

4. generalized backward composition: for some n ≥ 1:

(. . . (y|1z1)2 . . . |nzn) (x\y) → (. . . (x1|1z1)|2 . . . |nzn)
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Formal definition of CCG

� possible constraints on instantiations of variables:
1. The initial nonterminal of the category to which x is

instantiated can be restricted
2. The entire category to which y is instantiated can be

restricted.
� language L(G) generated by CCG G:

L(G) = {a1 . . . an|S →∗
G c1 . . . cn, ci ∈ f(ai), ai ∈ Vt∪{ε}, 1 ≤ i ≤ n}

Note that empty categories are admitted as lexical entries.

Terminology:
� (x/y) in the forward rules and (x\y) in the backward rules is

called the primary category of the rule.
� The other category is called the secondary category of the rule.
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From CCG to LIG

� crucial observations:
1. CCG categories can be seen as nonterminals + stack

� for example:

s ; s[]

s/a ; s[/a]

s/a\b\b/s ; s[/a,\b,\b, /s]

s/(n\s) ; s[/(n\s)]

� function application amounts to pushing item on stack
� function composition is a combination of pushing and

popping
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From CCG to LIG

� crucial observations:
2. Each component of the RHS of a combinatory rule is also a

component of one the LHS categories
� set of components does not increase in syntactic

composition
� ultimately determined by lexicon
� no upper limit for number of components in x in the

combinatory rules
3. For each combinatory rule, there are finitely many ground

instances of the secondary category.
� only x in the primary category has infinitely many

instances
� can be modeled by a LIG-stack
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From CCG to LIG

The construction
� Auxiliary notions:

� τ maps a category to its target:

τ(A) = A if A ∈ VN

τ(x/y) = τ(x)

τ(x\y) = τ(x)

� c maps a category to its components:

c(A) = {A} if A ∈ VN

c(x/y) = c(x) ∪ {y}

c(x\y) = c(x) ∪ {y}
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From CCG to LIG

� Auxiliary notions:
� lexical components C:

C =
⋃

x∈rg(f)

c(x)

� translation tr from CCG categories to stacked LIG-categories:

tr(A) = A[] iff A ∈ VN

tr(x/y) = tr(x) + [/y]

tr(x\y) = tr(x) + [\y]

where A[z] + α = A[z, α]
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From CCG to LIG

Let G be a CCG. We will construct an LIG G′ which is weakly
equivalent to G.

� V ′
T = VT

� V ′
N = VN

� VS = {/x|x ∈ CG} ∪ {\x|x ∈ CG}

� for each ground instance of the secondary category in each
combinatory rule α, β → γ ∈ R:

tr(γ) → tr(α), tr(β) ∈ R′

� for each 〈α, x〉 ∈ f :
tr(x) → α ∈ R′
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Example: copy language

� CCG for copy language:
� lexicon

f(a) = {S\A/S, S\A,A}

f(b) = {S\B/S, S\B,B}

� combinatory rules:

y (x\y) → x

(x/S) (S\z) → (x\z)

(x/S) (S\z1/z2) → (x\z1/z2)
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Example: copy language

� corresponding LIG:

S[··] → A S[· · \A]

S[··] → B S[· · \B]

S[· · \A] → S[· · /S] S[\A]

S[· · \B] → S[· · /S] S[\B]

S[· · \A, /S] → S[· · /S] S[\A, /S]

S[· · \B, /S] → S[· · /S] S[\B, /S]

S[\A, /S] → a

S[\A] → a

A → a

S[\B, /S] → b

S[\B] → b

B → b
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From LIG to TAG

� basic intuition:
� LIG and TAG are analogous extensions of CFGs
� CFGs: set of paths in a tree language is a regular language
� LIGs/TAGs: set of paths is a context-free language
� LIG : TAG = pushdown automaton : CFG in rewrite form
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From LIG to TAG

� first step: normalize LIG
� in normal form LIGs, every rule pushes or pops at most one

item from the stack
� straightforward to show that each LIG can be normalized

(without changing the set of accepted strings)
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From LIG to TAG

Let G be a LIG.
� in an LIG derivation, stacks are born

� as empty stack at the root node of some derivation (S[])
� in the RHS of a rule (i.e. as a non-spinal daughter node)

� they die at the LHS of a lexical rule
� normalization: all stacks are born and die empty
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From LIG to TAG

The construction: Let G be a LIG. We want to construct an
equivalent TAG G′.

� V ′
N = VN ∪ VN × ((VS × {+,−}) ∪ {ε}) × VN

� idea: adjunction nodes are labeled with elementary stack
operations:
� input nonterminal
� transition type (no transition or pushing/popping one stack

symbol)
� output nonterminal

� start symbol remains the same

– p.26



From LIG to TAG

� initial trees:

A

[AεB]/OA

B

for all nonterminals A,B

� A → x′ for all rules A[] → x in R
where x′ is like x except that empty stacks are removed
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From LIG to TAG

� auxilary trees: for all nonterminals A,B,C,D and all stack
symbols a

[AεB]/NA

[AεC]/OA

[CεB]/OA

[AεB]/NA

[AεB]/NA

[A + aC]/OA

[CεD]/OA

[D − aB]/OA

[AεB]/NA

[AεA]/NA
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From LIG to TAG

� further auxiliary trees:
constructed from rules from G

A[· · ] → x B[··] y ; [AεB]/NA → x [AεB]/NA y

A[· · ] → x B[· · a] y ; [A + aB]/NA → x [A + aB]/NA y

A[· · a] → x B[··] y ; [A − aB]/NA → x [A − aB]/NA y
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From TAG to CCG

� first proved in Weir (1988)

� construction sketched here follows Vijay-Shanker and Weir
(1994) (ftp://ftp.cogs.sussex.ac.uk/pub/users/davidw/mst94.pdf)

� basic idea: corresondence between TAG and CCG operations
� substitution ∼ function application
� adjunction ∼ function composition
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From TAG to CCG

� footed tree (t, d):
� d is address of a leaf of tree t
� root of t and d(t) have same label
� spine: path from root to foot d

� normal form footed TAG trees (nfft):
� at most binary branching
� all internal nodes are either OA or NA
� all OA-nodes are either on the spine or sister of nodes on the

spine
� algorithm to transform nffts into CCG-categories:
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From TAG to CCG

Algorithm nfft (t, d) ; category
� pos = root of t

� label(root(t)) = A

� c = A or c = Â
(x 7→ x̂ is a bijection with range disjoint from VN ∪ VT )
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From TAG to CCG

� until you reach d, do:
� if the non-spine daughter of pos is a left daughter with label

B/OA,
c = c\B

� if the non-spine daughter of pos is a right daughter with label
B/OA,

c = c/B

� if the spine daughter of pos has the label C/OA

c = c/Ĉ

� pos = spine daughter of pos
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From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S Ŝ
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From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A Ŝ\A
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From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A Ŝ\A
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From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A/D Ŝ\A/D
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From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A/D/Ŝ Ŝ\A/D/Ŝ
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From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A/D/Ŝ Ŝ\A/D/Ŝ
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From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A/D/Ŝ\B Ŝ\A/D/Ŝ\B
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From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A/D/Ŝ\B Ŝ\A/D/Ŝ\B
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From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A/D/Ŝ\B/C Ŝ\A/D/Ŝ\B/C
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From TAG to CCG

Example: S:NA

A:OA S:NA

S:OA

B:OA S:NA

S:NA C:OA

D:OA

S\A/D/Ŝ\B/C Ŝ\A/D/Ŝ\B/C
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From TAG to CCG

� 1-1 correspondence between nffts and corresponding categories
� in this fragment

� function application corresponds to substitution, provided the
substituted tree does only have NA-nodes

� function composition corresponds to adjunction provided the
yield of the adjoined tree is the empty string

� constraints can be enforced by using normal form TAGs
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From TAG to CCG

Normal Form TAG
� initial trees are of the form:

S is the start symbol, A is a non-terminal, w a terminal
S does not occur as non-foot leaf

S:OA

ε

A:NA

w

� auxiliary trees:
� binary branching
� all non-spine nodes are nonterminal leaves that are marked

as OA

Observation:

All TAGs can be transformed into equivalent normal form TAGs.
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From TAG to CCG

Normal form derivation:
� adjoined tree is always an elementary tree
� adjunction/composition strictly bottom up:

� the adjunction target does not dominate nonterminal leaves
� all nonterminals dominated by the adjunction target are

marked with NA
� if the sister of the adjunction target is marked with OA, this

sister is on the spine

Observation:

All trees that can be derived in a normal form TAG can be derived

in a normal form derivation.
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From TAG to CCG

The construction
Let G be a TAG in normal form. We construct an equivalent CCG G′.

� V ′
T = VT

� V ′
N = VN ∪ {Â|A ∈ VN}

� SG = SG′

� A ∈ f(w) iff the following is an initial tree of G:

A

a

� c ∈ f(ε) iff c is the result of transforming an auxiliary tree of G
into a CCG category according the the algorithm above
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From TAG to CCG

� rules of G′:
for each nonterminal A, each i ≤ n, where n is the maximal
length of a spine of an auxiliary tree in G, and each |j ∈ {\, /}

(x/A) A → x

A (x\A) → x

(x/Â)(. . . (Â|1z1)|2 . . . |izi) → (. . . (x|1z1)|2 . . . |izi)

– p.39
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