An introduction to mildly context sensitive grammar formalisms

Gerhard Jäger & Jens Michaelis University of Potsdam

{jaeger,michael}@ling.uni-potsdam.de

Rewriting systems

 $G = \langle N, T, S, R \rangle$

N ... nonterminal symbols T ... terminal symbols S ... start symbol ($S \in N$) R ... rules

Rules take the form

 $\alpha \rightarrow \beta$

where α, β are strings over $T \cup N$ and β is non-empty.

The Chomsky Hierarchy

$$L(G) = \{ w \in T^* | S \to^* w \}$$

" \rightarrow " is the reflexive and transitive closure of \rightarrow .

- Every recursively enumerable language can be described by a rewriting system.
- (Unrestricted) Rewriting systems are equivalent to Turing machines in expressive power.
- "(Chomsky) Type-0 grammars" = unrestricted rewriting systems
- membership in a type-0 language is undecidable

Context-sensitive grammars

- subclass of type-0 grammars
- restriction: all rules take the form

 $\alpha \rightarrow \beta$

where

 $\mathit{length}(\alpha) \leq \mathit{length}(\beta)$

 consequence: membership in a context-sensitive language (CSL) is decidable

Context-sensitive grammars

alternative (original) formulation:

All rules take the form

 $\alpha A\beta \to \alpha \gamma \beta$

where $A \in N$, $\alpha, \beta, \gamma \in (T \cup N)^*, \gamma \neq \varepsilon$

- The two formulations define the same class of languages.
- Not all decidable languages are context-sensitive (but most are).
- Membership problem for CSLs is PSPACE-complete.
- CSGs are expressively equivalent to linear bounded automata.

Context-free grammars

- subclass of context-sensitive grammars
- restriction:

rules take the form

 $A \to \alpha$

where

```
A \in N, \alpha \in (T \cup N)^+
```

- Membership in context-free language (CFL) is decidable in polynomial time ($O(n^3)$).
- CFG are expressively equivalent ot pushdown automata.

The Chomsky Hierarchy

Regular grammars

- subclass of context-free grammars
- restriction:

```
rules take the form
```

$$A \to B$$

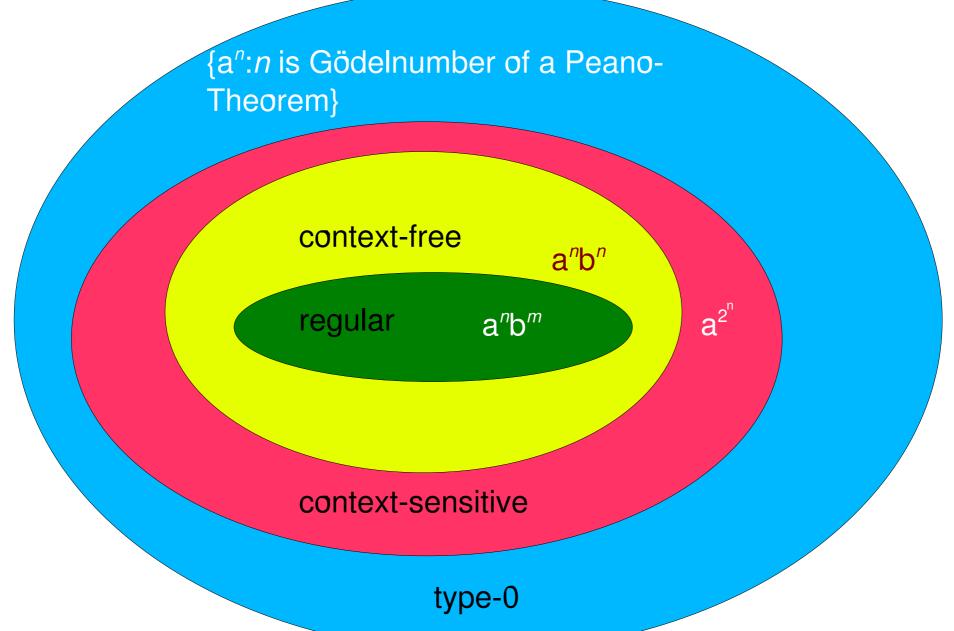
or

 $A \to Ba$

where $A, B \in N$ and $a \in T$

- Membership is decidable in linear time.
- RGs are expressively equivalent to finite state automata.

The Chomsky Hierarchy



Where are natural languages located?

- hotly contested issue over several decades
- typical argument:
 - find a recursive construction C in a natural language L
 - argue that the competence of speakers admits unlimited recursion (while the performance certainly poses an upper limit)
 - reduce C to a formal language L' of known complexity via homomorphisms
 - make a case that L must be at least as complex as L'
 - extrapolate to all human languages: if there is one languages which is at least as complex as ..., then the human language faculty must allow it in general

Are natural languages regular?

Chomsky 1957: Natural languages are not regular. Structure of his argument:

- Consider 3 hypothetical languages:
 - **1.** $ab, aabb, aaabbb (a^n b^n)$
 - 2. *aa*, *bb*, *abba*, *baab*, *aaaa*, *bbbb*, *aabbaa*, *abbbba*, ... (palindromic)
 - **3.** *aa, bb, abab, baba, aaaa, bbbb, aabaab, abbabb, aababaabab* (copy language)
- can easily be shown that these are not regular languages
- also languages like 1, 2 and 3 except allowing for embeddings of as and bs are not regular
- natural language is infinitely recursive

- The following constructions can be arbitrarily embedded into each other:
 - If S_1 , then S_2 .
 - Either S_3 or S_4 .
 - The man that said that S_5 is arriving today.
- Therefore—Chomsky says—English cannot be regular.

"It is clear, then that in English we can find a sequence a + S1 + b, where there is a dependency between a and b, and we can select as S1 another sequence c + S2 + d, where there is a dependency between c and d ... etc. A set of sentences that is constructed in this way...will have all of the mirror image properties of [2] which exclude [2] from the set of finite languages."

(Chomsky 1957)

Closure properties of regular languages

Theorem 1: If L_1 and L_2 are regular languages, then $L_1 \cap L_2$ is also a regular language.

Theorem 2: The class of regular languages is closed under homomorphism.

Theorem 3: The class of regular languages is closed under inversion.

homomorphism:

 $\textbf{neither} \mapsto a$

 $\mathbf{nor} \mapsto b$

everything else $\mapsto \varepsilon$

If it neither rains nor snows, then if it rains then it snows. $\mapsto ab$

 \blacksquare maps English not to the mirror language, but to the language L_1 :

$$\begin{array}{rccc} S & \to & aST \\ T & \to & bST \\ T & \to & bS \\ S & \to & \varepsilon \end{array}$$

The pumping lemma for regular languages

Let *L* be a regular language. Then there is a constant *n* such that if *z* is any string in *L*, and $length(z) \ge n$, we may write z = uvw in such a way that $length(uv) \le n$, $v \ne \varepsilon$, and for all $i \ge 0, uv^i w \in L$.

- Suppose English is regular.
- Due to closure under homomorphism, L_1 is reglar.
- a^*b^* is a regular language. (exercise: why?)
- Thus $a^*b^* \cap L_1$ is a regular language

$$L_2 = L_1 \cap a^* b^* = \{a^n b^m | n \le m\}$$

due to Theorem 1

Due to closure under inversion and homomorphism,

$$L_3 = \{a^n b^m | n \ge m\}$$

is also regular.

• Hence L_4 is regular:

$$L_4 = L_2 \cap L_3 = a^n b^n$$

- \blacksquare L₄ cannot be regular due to the pumping lemma
- Therefore English cannot be a regular language.

Dissenting view:

- all arguments to this effect use center-embedding
- humans are extremely bad at processing center-embedding
- notion of competence that ignores this is dubious
- natural languages are regular after all

Exercises:

Show that Chomsky correctly classified $a^n b^n$, the mirror language, and the copy language as non-regular!

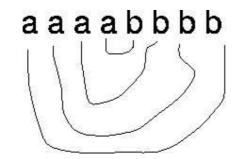
Are natural languages context-free?

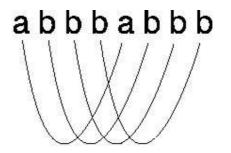
history of the problem:

- Chomsky 1957: conjecture that natural languages are not cf
- sixties, seventies: many attempts to prove this conjecture
- Pullum and Gazdar 1982:
 - all these attempts have failed
 - for all we know, natural languages (conceived as string sets) might be context-free
- Huybregts 1984, Shieber 1985: proof that Swiss German is not context-free
- Culy 1985: proof that Bambara is not context-free

Nested and crossing dependencies

- CFLs—unlike regular languages—can have unbounded dependencies
- however, these dependencies can only be nested, not crossing
- example:
 - $a^n b^n$ has unlimited nested dependencies \rightarrow context-free
 - \blacklozenge the copy language has unlimited crossing dependencies \rightarrow not context-free





Important properties of CFLs

Theorem 4: CFLs are closed under intersection with regular languages: If L_1 is a regular language and L_2 is context-free, then $L_1 \cap L_2$ is also context-free.

Important properties of CFLs

Theorem 5: The class of context-free languages is closed under homomorphism.

The pumping lemma for context-free languages

Let *L* be any CFL. Then there is a constant *n*, depending only on *L*, such that if *z* is in *L* and $length(z) \ge n$, then we may write z = uvwxy such that

- 1. $length(vx) \ge 1$
- 2. $length(vwx) \le n$
- 3. for all $i \ge 0 : uv^i wx^i y$ is in L.

The respectively argument

- Bar-Hillel and Shamir (1960):
 - English contains copy-language
 - cannot be context-free
- Consider the sentence

John, Mary, David, ... are a widower, a widow, a widower, ..., respectively.

Claim: the sentence is only grammatical under the condition that if the *n*th name is male (female) then the *n*th phrase after the copula is *a widower (a widow)*

- suppose the claim is true
- intersect English with regular language

 $L_1 = (Paul|Paula)^+ are[(a widower|a widow)^+ respectively]$

English $\cap L_1 = L_2$

- homomorphism $L_2 \rightsquigarrow L_3$:
 - John, David, Paul, ... $\mapsto a$
 - Mary, Paula, Betty, ... $\mapsto b$
 - a widower $\mapsto a$
 - a widow $\mapsto b$
 - are, respectively $\mapsto \varepsilon$

• result: copy language L_3

 $\{ww|w \in (a|b)^+\}$

- copy language is not cf due to pumping lemma (exercise: why is this so?)
- hence L_2 is not cf
- hence English is not cf

Counterargument

- crossing dependencies triggered by respectively are semantic rather than syntactic
- compare above example to

(Here are John, Mary and David.) They are a widower, a widow and a widower, respectively.

Cross-serial dependencies in Dutch

- Huybregt (1976):
 - Dutch has copy-language like structures
 - thus Dutch is not context-free
- (1) dat Jan Marie Pieter Arabisch laat zien schrijven THAT JAN MARIE PIETER ARABIC LET SEE WRITE 'that Jan let Marie see Pieter write Arabic'

Counterargument

- crossing dependencies only concern argument linking, i.e. semantics
- Dutch has no case distinctions
- as far as plain string are concerned, the relevant fragment of Dutch has the structure

 NP^nV^n

which is context-free