Evolutionary games and language

Gerhard Jäger

Gerhard.Jaeger@uni-bielefeld.de

August 15, 2005

ESSLLI 2005

Plan for this week

- Monday: A crash course in game theory
- Tuesday: Language evolution; the evolutionary interpretation of game theory
- Wednesday: Typology of case marking systems; stochastic evolution
- Thursday: Convex meanings; typology of color terms
- Friday: Spatial evolution, horizontal vs. vertical evolution

Reading

- Classical game theory
 - Martin J. Osborne, An Introduction to Game Theory, OUP, 2004. written for economists; very readable, lots of exercises
- Evolutionary game theory
 - Jürgen W. Weibull, Evolutionary Game Theory, MIT Press, 2002.
 - Josef Hofbauer and Karl Sigmund, Evolutionary Games and Population Dynamics, CUP 1998. both are mathematically quite advanced
- no textbooks on linguistic applications of GT or EGT so far
- This course will follow roughly my manuscript Evolutionary game theory for linguists. A primer (included in the reader and available from my homepage)

Historical remarks

- GT developed by John von Neumann and Oskar Morgenstern (1944: "Theory of Games and Economic Behavior")
- meta-theory for economy and political strategy (cold war)
- standard tool in economics (Nobel prize for economics 1994 for Nash, Harsanyi and Selten)
- since late 1970s application in biology to model Darwinian natural selection (1982: John Maynard Smith, "Evolution and the Theory of Games")
- connections to epistemic logic (Stalnaker, Spohn)
- application in pragmatics/philosphy of language
 - David Lewis (1969: "Conventions")
 - growing body of work in recent years (Parikh, Merin, van Rooij, ...)

Strategic games

Definition

A strategic game consists of

- a set of players
- for each player, a set of actions
- for each player, preferences over the set of action profiles
- A action profile is an assignment of an action to each player.
- Preferences are expressed as utilities (real numbers):

if and only if the decision maker prefers profile a over profile b.

Overview A crash course in game theory

Games in normal form Strict domination Nash equilibria Mixed strategies NE with mixed strategies Symmetric and asymmetric games

Prisoner's dilemma

"Two suspects in a major crime are held in separate cells. There is enough evidence to convict each of them of a minor offense, but not enough evidence to convict either of them of the major crime unless one of them acts as an informer against the other (finks). If they both stay quiet, each will be convicted of the minor offense and spend one year in prison. If one and only one of them finks, she will be freed and used as a witness against the other, who will spend four years inprison. If they both fink, each will spend three years in prison." (Osborne, p. 14)

Prisoner's dilemma

Players: The two suspects.

Actions: Each player's set of actions is { *Quiet, Fink*}

Preferences: Each player wants to spend as little time in prison as possible.

- Preferences can be expressed as utility matrix:
 - each dimension corresponds to one player
 - each row/column(/layer/...) corresponds to one strategy
 - each cell corresponds to one profile
 - each cell contains n numbers, one utility for each player

Games in normal form Strict domination Nash equilibria Mixed strategies NE with mixed strategies

Symmetric and asymmetric games

Prisoner's dilemma

Utility matrix				
		Susp	ect 2	
		Quiet	Fink	
Suspect 1	Quiet Fink	2,2	0,3	
Suspect 1	Fink	3,0	1,1	

Utility matrix of two-person games

 In two-person games, the first number is by convention the row player's utility, and the second number the column player's

Overview A crash course in game theory

Games in normal form Strict domination Nash equilibria Mixed strategies NE with mixed strategies Symmetric and asymmetric games

Bach or Stravinsky

Two people want to go out together. There is a concert with music by Bach, and one with music by Stravinsky. One of them loves Bach and the other Stravinsky, but they both prefer going out together over going to their favorite concert alone.

Bach or Stravinsky

Two people want to go out together. There is a concert with music by Bach, and one with music by Stravinsky. One of them loves Bach and the other Stravinsky, but they both prefer going out together over going to their favorite concert alone.

Utility matrix

	Bach	Stravinsky
Bach	2,1	0,0
Stravinsky	0,0	1,2

Overview A crash course in game theory

Games in normal form
Strict domination
Nash equilibria
Mixed strategies
NE with mixed strategies
Symmetric and asymmetric games

Stag hunt

(from Rousseau's "Discourse on the origin and foundations of inequality among men") A group of people want to hunt together. If they stay together and coordinate, they will be able to catch a stag. If only one of them defects, they will get nothing. Each of them has a good chance to hunt a hare if he goes hunting by himself. A stag is better than a hare, which is still better than nothing.

Stag hunt

(from Rousseau's "Discourse on the origin and foundations of inequality among men") A group of people want to hunt together. If they stay together and coordinate, they will be able to catch a stag. If only one of them defects, they will get nothing. Each of them has a good chance to hunt a hare if he goes hunting by himself. A stag is better than a hare, which is still better than nothing.

Utility matrix

	Stag	Hare
Stag	2,2	0,1
Hare	1,0	1,1

Dominated actions

some more notation:

Profiles

Let a be an action profile and i a player.

- a_i is the strategy of player i in the profile a.
- a_{-i} is the profile of actions that all players **except** i play in a.

In a two-person game, a_{-i} is simply the action of the other player in a.

Dominated actions

Definition (Strict domination)

In a strategic game, player i's action a_i'' strictly dominates her action a_i' if

$$u_i(a_i'', a_{-i}) > u_i(a_i', a_{-i})$$

for every list a_{-i} of the other players' actions.

Dominated actions

Definition (Strictly dominated actions)

In a strategic game, player i's action a_i is **strictly dominated** iff for every list a_{-i} of the other players' actions, there is an action a'_i , such that

$$u_i(a'_i, a_{-i}) > u_i(a_i, a_{-i})$$

8,3	6,4	15,0
9,1	5,2	6,3
3,2	4,3	5,4
2,66	3,10	4,8

- no rational player would ever play a strictly dominated strategy
- therefore they can be left out of consideration
- this procedure can be iterated

8,3	6,4	15,0
9,1	5,2	6,3
3,2	4,3	5,4
2,66	3,10	4,8

- no rational player would ever play a strictly dominated strategy
- therefore they can be left out of consideration
- this procedure can be iterated

8,3	6,4	15,0
9,1	5,2	6,3
3,2	4,3	5,4
2,66	3,10	4,8

8,3	6,4	15,0
9,1	5,2	6,3
3,2	4,3	5,4
2,66	3,10	4,8

8,3	6,4	15,0
9,1	5,2	6,3
3,2	4,3	5,4
2,66	3,10	4,8

Order of iterated elimination does not matter

8,3	6,4	15,0
9,1	7,2	6,3
3,2	4,3	5,4
2,9	3,10	4,8

Order of iterated elimination does not matter

8,3	6,4	15,0
9,1	7,2	6,3
3,2	4,3	5,4
2,9	3,10	4,8

Order of iterated elimination does not matter

8,3	6,4	15,0
9,1	7,2	6,3
3,2	4,3	5,4
2,9	3,10	4,8

Overview A crash course in game theory

Games in normal form
Strict domination
Nash equilibria
Mixed strategies
NE with mixed strategies
Symmetric and asymmetric games

Iterated elimination of dominated actions

Theorem

In a finite game, a unique set of action profiles survives iterated elimination of strictly dominated actions.

Rationalizability

Rationality

A player is **rational** iff

- he holds consistent beliefs,
- he is logically omniscient,
- he knows the utility matrix (i.e. the preferences of the other players), and
- always chooses an action that maximizes the utility that he expects on the basis of his beliefs.

Rationalizability

Rationalizability

An action profile a is **rationalizable** if there is a situation where

- each player is rational,
- it is common knowledge among the players that each player is rational
- each player i plays a_i.

Theorem

The action profiles that survive iterated elimination of strictly dominated actions are exactly those that are rationalizable.

How should a rational player play?

- rational people should play rationalizable actions
- Prisoner's dilemma: only one rationalizable profile (F, F)
- but: in Stag Hunt (and BoS etc.), all actions are rationalizable
- Suppose you know for sure what the other player does ⇒ simplifies the decision a lot

Best response

Definition (Best response)

Let a be an action profile. a_i is the **best response** of player i to the action profile a_{-i} of the other players iff

$$u_i(a_i,a_{-i}) \geq u_i(a_i',a_{-i})$$

for any alternative actions a'_i of player i.

If a rational player knows the actions of the other players, he will always play a best response.

Nash equilibria

- Suppose each player knows in advance what the others will do.
- If all players are rational, they will all play a best response to the actions of the others.
- Such a state is called **equilibrium**.
- First discovered by John Nash, therefore Nash equilibrium

Definition (Nash equilibrium)

The profile a is a Nash equilibrium if for each player i, a_i is a best response to a_{-i} .

Nash equilibria

Do the following games have Nash equilibria, and if yes, which ones?

- Prisoner's dilemma
- Bach or Stravinsky
- Stag hunt
- 4 Hawks and Doves

Hawks and Doves

Hawk Dove

Hawk	Dove
1,1	7,2
2,7	3,3

Nash equilibria

Matching pennies

Head Tail

Head	Tail
1,-1	-1,1
-1,1	1,-1

Rock-Paper-Scissors

Rock Paper Scissor

Rock	Paper	Scissor
0,0	-1,1	1,-1
1,-1	0,0	-1,1
-1,1	1,-1	0,0

Gerhard Jäger

Evolutionary games and language

Non-strict NEs

1,1	1,0	0,1
1,0	0,1	1,0

- one NE: (R_1, C_1)
- for R, it is not the unique best response to C_1

Mixed strategies: motivation

- players may choose to randomize their action
- games may involve random pairing from a population
- I may have incomplete knowledge about the actions of the other players, but enough knowledge to quantify my ignorance, i.e., to assign probabilities

In these cases, a rational decision has to be based on the **expected utility**, taking probabilities into account.

Mixed strategies

Definition

A mixed strategy of a player in a strategic game is a probability distribution over the player's action.

If the other players play mixed strategies, my utility for each of my possible actions becomes a random variable. I don't know its value in advance, but I can calculate its expected value. Also, if I play a mixed strategy myself, my utility is a random variable.

Definition (Expected utility)

For each player j, let α_j be the mixed strategy of j. The **expected utility** for player i in the mixed profile α is defined as

$$U_i(\alpha) = \sum (\Pi_j \alpha_j(a_j)) u_i(a)$$

Exercises

- Suppose you are the row player in BoS. The columns player will play Bach with probability $\frac{1}{3}$ and Stravinsky with probability $\frac{2}{3}$. What is your expected utility for Bach? What for Stravinsky? What for the mixed strategy: playing Bach with probability p and Stravinsky with probability 1-p?
- Same problem for Stag hunt.
- What is your maximal expected utility that one can achieve in Matching Pennies, provided the other player knows your strategy and is rational?
- Same problem for Rock-Paper-Scissors.

Games in normal form Strict domination Nash equilibria Mixed strategies NE with mixed strategies

Symmetric and asymmetric games

Best response with mixed strategies

- notions "best response" and "Nash equilibrium" carry over from pure to mixed strategies
- nothing fundamentally new, except that "utility" is replaced by "expected utility

Definition (Mixed strategy best response)

Let α be an mixed strategy profile. α_i is the **best response** of player i to the action profile α_{-i} of the other players iff

$$U_i(\alpha_i, \alpha_{-i}) \geq U_i(\alpha'_i, \alpha_{-i})$$

for any alternative mixed strategy α_i' of player i.

Overview A crash course in game theory

Games in normal form Strict domination Nash equilibria Mixed strategies

NE with mixed strategies Symmetric and asymmetric games

Mixed Nash equilibria

Definition (Mixed Nash equilibrium)

The mixed strategy profile α is a **mixed Nash equilibrium** if for each player i, α_i is a best response to α_{-i} .

Theorem (Existence of mixed strategy Nash equilibrium in finite games)

Every strategic game in which each player has finitely many actions has a mixed strategy Nash equilibrium.

Exercises

The following games have one mixed strategy equilibrium each:

- Bach or Stravinsky
- Stag hunt
- Hawk and Dove
- Matching Pennies
- Rock-Paper-Scissors

Find them.

Symmetric games

 if the "game" is a symmetric interaction between members of the same population, players can swap places

Symmetric games

A two-person game is symmetric only if both players have the same set of strategies at their disposal, and the utility matrix is symmetric in the following sense:

$$u_R(R_n, C_m) = u_C(R_m, C_n)$$

for all strategies m and n.

Examples

- symmetric games (more precisely: games that can be conceived as symmetric):
 - Prisoner's dilemma
 - Stag hunt
 - Hawk and Dove
 - Rock-Paper-Scissors
- asymmetric games (more precisely: games that cannot be conceived as symmetric):
 - Bach or Stravinsky
 - Matching pennies

Convention

The column player's utility can be supressed in the utility matrix (because it is redundant). If the index of utility function is suppressed, the row player's utility is meant.

Symmetric Nash equilibria

Suppose a population consists of rational players. They play a symmetric game against each other with random pairing. Everybody knows the probability distribution over strategies at a random encounter. A **symmetric** Nash equilibrium is a possible state of such a population.

Definition (Symmetric Nash equilibrium)

A mixed strategy α for a symmetric two-person game is a symmetric Nash equilibrium iff

$$U(\alpha, \alpha) \geq U(\alpha', \alpha)$$

for each mixed strategy α' .

Strict equilibria

If a strategy is strictly better against itself than any other strategy (strict reading), we have a **strict** symmetric Nash equilibrium.

Definition (Strict symmetric Nash equilibrium)

A mixed strategy α for a symmetric two-person game is a **strict** symmetric Nash equilibrium iff

$$U(\alpha, \alpha) > U(\alpha', \alpha)$$

for each mixed strategy α' .

Overview A crash course in game theory

Games in normal form Strict domination Nash equilibria Mixed strategies NE with mixed strategies Symmetric and asymmetric games

Strict equilibria

Theorem

Strict Nash equilibria are always pure.