Evolutionary games and language

Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de

August 19, 2005

ESSLLI 2005

Gerhard Jäger Evolutionary games and language

・ロト ・回ト ・ヨト ・ヨト

Cognitive semantics

Gärdenfors (2000):

- meanings are arranged in conceptual spaces
- conceptual space has geometrical structure
- dimensions are founded in perception/cognition

(日) (同) (E) (E) (E)

Cognitive semantics

Gärdenfors (2000):

- meanings are arranged in **conceptual spaces**
- conceptual space has geometrical structure
- dimensions are founded in perception/cognition

Convexity

A subset C of a conceptual space is said to be *convex* if, for all points x and y in C, all points between x and y are also in C.

イロト イポト イヨト イヨト

Cognitive semantics

Gärdenfors (2000):

- meanings are arranged in **conceptual spaces**
- conceptual space has geometrical structure
- dimensions are founded in perception/cognition

Convexity

A subset C of a conceptual space is said to be *convex* if, for all points x and y in C, all points between x and y are also in C.

Criterion P

A *natural property* is a convex region of a domain in a conceptual space.

イロト イポト イヨト イヨト

Examples

- spatial dimensions: *above*, *below*, *in front of*, *behind*, *left*, *right*, *over*, *under*, *between* ...
- temporal dimension: early, late, now, in 2005, after, ...
- sensual dimenstions: loud, faint, salty, light, dark, ...
- abstract dimensions: cheap, expensive, important, ...

・ロト ・回ト ・ヨト ・ヨト

The naming game

- two players:
 - Speaker
 - Hearer
- infinite set of Meanings, arranged in a finite metrical space distance is measured by function $d: M^2 \mapsto R$
- finite set of **F**orms
- sequential game:
 - nature picks out $m \in M$ according to some probability distribution p and reveals m to S
 - 2 S maps m to a form f and reveals f to H
 - I maps f to a meaning m'

(日) (同) (E) (E) (E)

The naming game

Goal:

- optimal communication
- both want to minimize the distance between m and m'

Strategies:

- speaker: mapping S from M to F
- hearer: mapping H from F to M
- Average utility: (identical for both players)

$$u(S, H) = \int_{M} p_m \times \exp(-d(m, H(S(m)))^2) dm$$

vulgo: average similarity between speaker's meaning and hearer's meaning

Voronoi tesselations

- suppose H is given and known to the speaker: which speaker strategy would be the best response to it?
 - every form f has a "prototypical" interpretation: H(f)
 - for every meaning *m*: S's best choice is to choose the *f* that minimizes the distance between *m* and *H*(*f*)
 - optimal *S* thus induces a **partition** of the meaning space
 - Voronoi tesselation, induced by the range of *H*

・ロン ・回 とくほど ・ ほとう

Voronoi tesselation

Lemma

The Voronoi tessellation based on a Euclidean metric always results in a partioning of the space into convex regions.

Gerhard Jäger Evolutionary games and language

(日) (四) (王) (王) (王) (王)

ESSs of the naming game

- best response of H to a given speaker strategy S not as easy to characterize
- general formula

$$H(f) = \arg \max_{m} \int_{S^{-1}(f)} p_{m'} \times \exp(-d(m,m')^2) dm'$$

- such a hearer strategy always exists
- linguistic interpretation: H maps every form f to the prototype of the property S⁻¹(f)

ESSs of the naming game

Lemma

In every ESS (S, H) of the naming game, the partition that is induced by S^{-1} on M is the Voronoi tesselation induced by H[F].

Gerhard Jäger Evolutionary games and language

(日) (同) (E) (E) (E)

ESSs of the naming game

Lemma

In every ESS (S, H) of the naming game, the partition that is induced by S^{-1} on M is the Voronoi tesselation induced by H[F].

Theorem

For every form f, $S^{-1}(f)$ is a convex region of M.

Simulations

- two-dimensional circular meaning space
- discrete approximation
- uniform distribution over meanings
- initial stratgies are randomized
- update rule according to (discrete time version of) replicator dynamics

イロン イヨン イヨン イヨン

The color space

- physical color space is of infinite dimensionality
- psychological color space has only three dimensions:
 - brightness
 hue
 saturation

Gerhard Jäger Evolutionary games and language

The color space

Color words

- Berlin and Kay (1969): study of the typology of color words
- subjects with typologically distant native languages
- subjects were asked about prototype and extension of the basic color words of their native language
- English: 11 basic colors

・ロン ・回と ・ヨン ・ヨン

Berlin and Kay's study

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Implicational hierarchies

Gerhard Jäger Evolutionary games and language

・ロン ・回 と ・ ヨン ・ ヨン

-2

A toy example

suppose

- circular two-dimensional meaning space
- four meanings are highly frequent
- all other meanings are negligibly rare
- let's call the frequent meanings Red, Green, Blue and Yellow

・ロン ・回 と ・ ヨ と ・ ヨ と

 $p_i(\text{Red}) > p_i(\text{Green}) > p_i(\text{Blue}) > p_i(\text{Yellow})$

A toy example

suppose

- circular two-dimensional meaning space
- four meanings are highly frequent
- all other meanings are negligibly rare
- let's call the frequent meanings Red, Green, Blue and Yellow

・ロン ・回 と ・ ヨン ・ ヨン

 $p_i(\text{Red}) > p_i(\text{Green}) > p_i(\text{Blue}) > p_i(\text{Yellow})$

Yes, I made this up without empirical justification.

Two forms

- suppose there are just two forms
- only one Strict Nash equilibrium (up to permuation of the forms)
- induces the partition {Red, Blue}/{Yellow, Green}

イロン イヨン イヨン イヨン

Three forms

- if there are three forms
- two Strict Nash equilibria (up to permuation of the forms)
- partitions {Red}/{Yellow}/{Green, Blue} and {Green}/{Blue}/{Red, Yellow}
- only the former is stochastically stable (resistent against random noise)

・ロン ・回 とくほど ・ ほとう

Four forms

- if there are four forms
- one Strict Nash equilibrium (up to permuation of the forms)
- partitions
 {Red}/{Yellow}/{Green}/{Blue}

・ロン ・回 と ・ ヨ と ・ ヨ と

Conclusion

Meaning spaces

- assumption: utility is correlated with similarity between speaker's meaning and hearer's meaning
- consequences:
 - convexity of meanings
 - prototype effects
 - uneven probability distribution over meanings leads to the kind of implicational universals that are known from typology of color terms

・ロト ・回ト ・ヨト ・ヨト

Don't talk to strangers:

Spatial EGT

Gerhard Jäger Evolutionary games and language

・ロン ・回と ・ヨン ・ヨン

Spatial EGT

- idealized assumption of standard EGT:
 - populations are infinite
 - each pair of individuals is equally likely to interact with each other
- Stochastic EGT gives up the first assumption
- What happens if you give up second assumption as well?

・ロン ・回 ・ ・ ヨン ・ ヨン

Spatial EGT

• one possible instantiation:

- individuals are arranged in a spatial structure
- every individual only interacts with its immediate neighbors

Spatial EGT

Suppose we have

- set of **positions** pos
- irreflexive **neighbourhood** relation *n* among *pos*
- **strategy function** *st* maps positions and time points random variable over strategies
- **density function** *d* maps positions/time points to positive real number
- **fitness function** *f* assigns fitness value (positive real) to positions/time points
- Z(a, t): normalization variable; accumulated weighted fitness of the neighborhood of a at time t

Spatial EGT

$$f(a, t+1) = \sum_{b:n(a,b)} u(st(a, t), st(b, t))$$

$$d(a, t+1) = d(a, t) \times f(a, t+1)$$

$$P(st(a, t+1) = i) = \frac{1}{Z(a, t+1)} \times$$

$$\sum_{\substack{(b \in \{x:n(a,x)\} \cup \{a\}) \cap \{x:st(x,t)=i\}}} d(b, t+1) \times f(b, t+1)$$

$$Z(a, t+1) = \sum_{b \in \{x:n(a,x)\} \cup \{a\}} d(b, t+1) \times f(b, t+1)$$

Gerhard Jäger Evolutionary games and language

(ロ) (四) (E) (E) (E)

Spatial structure

- two-dimensional chessboard like structure
- neighborhood: adjacent fields; each field has eight neighbors
- torus shape: upper and lower boundaries are neighbors, and likewise left and right boundaries

Spatial Prisoner's dilemma

• one version of Prisoner's dilemma:

	С	D
С	5,5	1,6
D	6,1	2,2

- standard EGT: one ESS: (D, D)
- spatial EGT:
 - only interaction with neighbors
 - neighbors are likely to be "related" to each other
 - increased likelihood of interactions between individuals with identical strategies
 - favors strategies with high utility against itself, even if not NE

・ロト ・回ト ・ヨト ・ヨト

Spatial Prisoner's dilemma

• proportion of C-players in a spatial Prisoner's dilemma:

Spatial Hawks and Doves

- spatial evolution generally favors intra-strategy altruism
- should favor Doves over Hawks

	Н	D
Η	1	7
D	2	3

(日) (四) (王) (王) (王) (王)

Spatial Hawks and Doves

- development of the proportion of hawks in spatial HaD
- proportion of doves is most of the time higher than in the ESS (20%)

・ロト ・回ト ・ヨト

∃ >

Game of communication

- row strategies:
 - T: talk
 - S: remain silent
- column strategies
 - A: pay attention
 - *I*: ignore
- only one ESS: (S, I)

・ロン ・回 と ・ ヨ と ・ ヨ と

Spatial game of communication

• symmetrized game of communication:

	(<i>T</i> , <i>A</i>)	(<i>T</i> , <i>I</i>)	(<i>S</i> , <i>A</i>)	(<i>S</i> , <i>I</i>)
(<i>T</i> , <i>A</i>)	3	2	1	0
(T, I)	2	1	2	1
(<i>S</i> , <i>A</i>)	3	3	1	1
(<i>S</i> , <i>I</i>)	2	2	2	2

• "cooperative" strategy pair (T, A) forms stable clusters

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日