Phylogenetic trees I Foundations, Distance-based inference

Gerhard Jäger

ESSLLI 2016

Background readings for this lecture

- Ewens and Grant (2005), sections 15.1–15.4
- Nunn (2011), chapter 2

Why trees?

- tree diagrams have long history in linguistics and life sciences:
 - taxonomies (from Aristotle to Linné)
 - tree of life (Darwin)
 - language family trees (Schleicher)
- commonalities between biological and language family trees:
 - tree diagram represents a historical hypothesis
 - internal nodes represent a historical reality, not just a taxonomic category
- technical term for this kind of tree: **phylogenetic tree** (aka *phylogeny*)

Some definitions

Definition (Tree)

An unrooted tree is a connected undirected acyclic weighted graph with positives weights. In other words, an unrooted tree T is a triple (V, E, l) with

- V is a finite set, the nodes or vertices,
- $E \subset V \times V$, the set of *edges*, is symmetric,
- E^+ (E's transitive closure) is irreflexive,
- $E^* = V \times V$, and
- $l: E \mapsto \mathbb{R}^+$ is a function assigning each edge a non-negative *length*.

Remark: Unrooted trees might seem to be unintuitive data structures. Later on we will see though that often, estimating the unrooted version of a phylogeny is a quite different task from estimating the location of the root. So it makes sense to separate the two problems.

Some more definitions

Definition

- The *degree* of node v is the number of edges containing v as a component.
- Nodes with degree 1 are called *tips* or *leaves*.
- An *unrooted binary tree* is an unrooted tree with all nodes having degree 3 or 1.

Even more definitions

Definition (Rooted trees)

- A rooted tree is a pair (T, v), where T is an unrooted tree and v is a designated vertex in T (its root).
- A rooted binary tree is an unrooted tree where exactly one node (the root) has degree 2 and all other nodes have degrees 1 or 3.

Distances

Definition (Distances)

Let $\mathcal{T} = (V, E, l)$ be a tree. Let $d : V \times V \mapsto \mathbb{R}$ be the unique function such that for all $a, b \in V$:

• If
$$(a,b) \in E$$
, then $d(a,b) = l(a,b)$.

•
$$l(a,a) = 0$$

•
$$d(a,b) = d(b,a)$$
.

•
$$l(a,b) = \min_{c}(l(a,c) + l(c,b))$$

Vulgo: d(a, b) is the length of the unique path between a and b.

Ultrametric trees

Definition (Ultrametric distance)

d is an ultrametric distance if it is a metric (d(a, a) = 0, d(a, b) = d(b, a) \ge 0, d(a, b) + d(b, c) \ge d(a, c) with

$$d(a,b) \le \max\{d(a,c), d(b,c)\}$$

Definition (Ultrametric tree)

A rooted tree is *ultrametric* iff all tips have the same distance from the root.

Ultrametric trees

Theorem

The pairwise distances between a set of taxa are ultrametric if and only if there is an ultrametric tree with the taxa as tips representing those distances.

Proof: By induction over number of taxa.

Unweighted Pair Group Method Using Arithmetic Averages (UPGMA) algorithm constructs ultrametric tree from pairwise distances.

UPGMA

Cluster distances

Led A and B be two non-empty sets of taxa.

$$d(A,B) \doteq \frac{1}{|A| \times |B|} \sum_{x \in A, y \in B} d(x,y)$$

UPGMA

UPGMA algorithm

• Initialization:

- $X \leftarrow$ the set of taxa.
- $V \leftarrow X$
- $E \leftarrow \emptyset$
- $h(x) = 0 \ \forall x \in X$

• Iteration:

 $\bullet \ \ {\rm while} \ |X|>1$

•
$$\{i, j\} \leftarrow \arg_{x \in X, y \in X, x \neq y} \min d(x, y)$$

•
$$X \leftarrow X \setminus \{i, j\} \cup \{\{i, j\}\}$$

•
$$V \leftarrow V \cup \{\{i, j\}\}$$

•
$$E \leftarrow E \cup \{(\{i, j\}, i), (\{i, j\}, j)\}$$

•
$$h(\{i, j\}) = d(i, j)/2$$

•
$$l(\{i, j\}, i) = h(\{i, j\}) - h(i)$$

•
$$l(\{i, j\}, j) = h(\{i, j\}) - h(j)$$

•
$$d(\{i, j\}, k) = \frac{d(i,k) + d(j,k)}{2}$$

	English	Dutch	German	Italian
Dutch	3.0			
German	3.0	2.0		
Italian	8.0	8.0	8.0	
Spanish	8.0	8.0	8.0	3.4

	English	Dutch	German	Italian
Dutch	3.0			
German	3.0	2.0		
Italian	8.0	8.0	8.0	
Spanish	8.0	8.0	8.0	3.4

•Dutch

h 🗼

English

Spanish

Italian

German

	English	а	Italian
а	3.0		
Italian	8.0	8.0	
Spanish	8.0	8.0	3.4

	English	а	Italian
а	3.0		
Italian	8.0	8.0	
Spanish	8.0	8.0	3.4

	b	Italian
Italian	8.0	
Spanish	8.0	3.4

	b	Italian
Italian	8.0	
Spanish	8.0	3.4

h 🛦

b c 8.0

h 🛦

load library

library(phangorn)

・ロト・日本・日本・日本・日本・今日・

-			
1 OF	2280	1000	
			н.
_			

define distance matrix

・ロト・日本・日本・日本・日本・日本

print(d)

##		English	Dutch	German	Italian
##	Dutch	3.0			
##	German	3.0	2.0		
##	Italian	8.0	8.0	8.0	
##	Spanish	8.0	8.0	8.0	3.4

Gerhard Jäger

Phylogenetic trees I

オロトオタトオミトオミト ミーのへの

perform UPGMA

```
upgma.tree <- upgma(d)
```

cophenetic(upgma.tree)-as.matrix(d)

##		English	Dutch	German	Italian	Spanish
##	English	0	0	0	0	0
##	Dutch	0	0	0	0	0
##	German	0	0	0	0	0
##	Italian	0	0	0	0	0
##	${\tt Spanish}$	0	0	0	0	0

イロト イクト イモト イモト 一日 一のへの

visualize result

- UPGMA algorithm also works with distances which are not ultra-metric
- in this case it will **not** recover the correct distances
- tree topology may or may not be recovered

・ロト・日本・日本・日本・日本・今日・

upgma.tree <- upgma(d)
cophenetic(upgma.tree)-as.matrix(d)</pre>

##		German	\mathtt{Dutch}	English	${\tt Spanish}$	Italian	Gothic
##	German	0.0	0.0	0.0	-0.5	-0.5	0.0
##	Dutch	0.0	0.0	0.0	-0.5	-0.5	0.0
##	English	0.0	0.0	0.0	-0.5	-0.5	0.0
##	Spanish	-0.5	-0.5	-0.5	0.0	0.0	1.5
##	Italian	-0.5	-0.5	-0.5	0.0	0.0	1.5
##	Gothic	0.0	0.0	0.0	1.5	1.5	0.0

オロトオ部トオミトオミト ミーのくで

Neighbor Joining

- If distances are derived from non-ultrametric distances, we can recover the correct unrooted tree.
- Most commonly used method: Neighbor Joining (NJ) (Saitou and Nei, 1987)
- **Neighbors:** Two tips are *neighbors* if the path between them consists of only one node.

Neighbor Joining

- $\bullet\,$ suppose distances between N vertices are given
- auxiliary quantity:

$$\delta(x,y) = (N-4)d(x,y) - \sum_{z \notin \{x,y\}} (d(x,z) + d(y,z))$$

Theorem

If d is derived from a tree ${\cal T}$ and $\delta(x,y)$ is minimal, then x and y are neighbors in ${\cal T}.$

Proof: See Ewens and Grant (2005), 15.4.

Neigbor Joining

Neighbor Joining algorithm

- Initialization:
 - $X \leftarrow \text{the set of taxa}$
 - $\bullet \ V \leftarrow X$
 - $E \leftarrow \emptyset$

Iteration: while

$$\begin{array}{l} \mbox{while } |X| > 1 \\ \bullet \ \delta(x,y) = (|X| - 4)d(x,y) - \sum_{z \not\in \{x,y\}} (d(x,z) + d(y,z)) \\ \bullet \ \{i,j\} \leftarrow \arg_{x \in X, y \in X, x \neq y} \min \delta(x,y) \\ \bullet \ V \leftarrow V \cup \{\{i,j\}\} \\ \bullet \ E \leftarrow E \cup \{(\{i,j\},i), (\{i,j\},j)\} \\ \bullet \ l(\{i,j\},i) = \frac{1}{2}d(i,j) + \frac{1}{2(|X|-2)} \sum_{k \in X} (d(i,k) - d(j,k)) \\ \bullet \ l(\{i,j\},j) = \frac{1}{2}d(i,j) + \frac{1}{2(|X|-2)} \sum_{k \in X} (d(j,k) - d(i,k)) \\ \bullet \ d(\{i,j\},k) = \frac{1}{2}(d(i,k) + d(j,k) - d(i,j)) \\ \bullet \ X \leftarrow X \setminus \{i,j\} \cup \{\{i,j\}\} \end{array}$$

d	German	Dutch	English	Spanish	Italian
Dutch	2.0				
English	3.0	3.0			
Spanish	8.0	8.0	8.0		
Italian	8.0	8.0	8.0	3.4	
Gothic	3.0	3.0	3.0	6.0	6.0

d	German	Dutch	English	Spanish	Italian	δ	German	Dutch	English	Spanish	Italian
Dutch	2.0					Dutch	-40.0				
English	3.0	3.0				English	-37.0	-37.0			
Spanish	8.0	8.0	8.0			Spanish	-25.4	-25.4	-26.4		
Italian	8.0	8.0	8.0	3.4		Italian	-25.4	-25.4	-26.4	-53.2	
Gothic	3.0	3.0	3.0	6.0	6.0	Gothic	-33.0	-33.0	-34.0	-30.4	-30.4

d	German	Dutch	English	Spanish	Italian	δ	German	Dutch	English	Spanish	Italian
Dutch	2.0					Dutch	-40.0				
English	3.0	3.0				English	-37.0	-37.0			
Spanish	8.0	8.0	8.0			Spanish	-25.4	-25.4	-26.4		
Italian	8.0	8.0	8.0	3.4		Italian	-25.4	-25.4	-26.4	-53.2	
Gothic	3.0	3.0	3.0	6.0	6.0	Gothic	-33.0	-33.0	-34.0	-30.4	-30.4

d	German	Dutch	English	Gothic
Dutch	2.0			
English	3.0	3.0		
Gothic	3.0	3.0	3.0	
а	6.3	6.3	6.3	4.3

d	German	Dutch	English	Gothic
Dutch	2.0			
English	3.0	3.0		
Gothic	3.0	3.0	3.0	
а	6.3	6.3	6.3	4.3

δ	German	Dutch	English	Gothic
Dutch	-22.6			
English	-20.6	-20.6		
Gothic	-18.6	-18.6	-19.6	
a	-18.6	-18.6	-19.6	-23.6

Gerhard Jäger

Phylogenetic trees I

d	German	Dutch	English	Gothic
Dutch	2.0			
English	3.0	3.0		
Gothic	3.0	3.0	3.0	
а	6.3	6.3	6.3	4.3

δ	German	Dutch	English	Gothic
Dutch	-22.6			
English	-20.6	-20.6		
Gothic	-18.6	-18.6	-19.6	
а	-18.6	-18.6	-19.6	-23.6

d	German	Dutch	English
Dutch	2.0		
English	3.0	3.0	
b	3.5	2.5	2.5

d	German	Dutch	English
Dutch	2.0		
English	3.0	3.0	
b	3.5	2.5	2.5

δ	German	Dutch	English
Dutch	-11.0		
English	-10.0	-10.0	
b	-10.0	-10.0	-11.0

d	German	Dutch	English
Dutch	2.0		
English	3.0	3.0	
b	3.5	2.5	2.5

δ	German	Dutch	English
Dutch	-11.0		
English	-10.0	-10.0	
b	-10.0	-10.0	-11.0

d	English	b
b	2.5	
С	2.0	1.5

d	English	b
b	2.5	
С	2.0	1.5

δ	English	b	
b	-6.0		
С	-6.0	-6.0	

English	b	δ	English
2.5		b	-6.0
2.0	1.5	С	-6.0

d c d 0.5

0	c
d -1.0	

- This is the correct **unrooted** tree.
- There is no way to locate the root just from the distance information.
- Generally, NJ will recover the correct unrooted tree if the distances are derived from a tree.

```
library(phangorn)
taxa <- c('German', 'Dutch', 'English',</pre>
           'Spanish', 'Italian', 'Gothic')
distMatrix <- matrix(c(0,2,3,8,8,3,
                        2.0.3.8.8.3.
                        3,3,0,8,8,3,
                        8.8.8.0.3.4.6.
                        8,8,8,3.4,0,6,
                        3,3,3,6,6,0),
                      byrow=T.nrow=6.
                      dimnames=list(taxa,taxa))
```

```
d <- as.dist(distMatrix)</pre>
```

```
nj.tree <- nj(d)
cophenetic(nj.tree)[taxa,taxa]-as.matrix(d)</pre>
```

##		German	Dutch	English	Spanis
##	German	0.000000e+00	0.000000e+00	-4.440892e-16	
##	Dutch	0.000000e+00	0.000000e+00	-4.440892e-16	
##	English	-4.440892e-16	-4.440892e-16	0.000000e+00	
##	Spanish	0.000000e+00	0.000000e+00	0.000000e+00	
##	Italian	0.000000e+00	0.000000e+00	0.000000e+00	
##	Gothic	8.881784e-16	8.881784e-16	8.881784e-16	
##		Gothic			
##	German	8.881784e-16			
##	Dutch	8.881784e-16			
##	English	8.881784e-16			
##	Spanish	0.000000e+00			
##	Italian	0.000000e+00			
##	Gothic	0.000000e+00			

Where do we go from there?

- in practice, "true" distances are never known \rightarrow must be *estimated*
- ideally, we want to know/estimate distances in terms of historical time
- in practice, the best we can hope for are estimates of the *amount of change*
- whether or not historical and evolutionary time are proportional depends in how much *rate of change* varies across lineages

Where do we go from there?

• ultrametric trees only make sense if

- rate of change is (approximately) constant ("molecular clock assumption")
- all taxa exist at the same point in time
- as the first condition is rarely fulfilled, this NJ is usually superior to UPGMA
- However: for n taxa,
 - ${\, \bullet \,}$ branch lengths in ultrametric tree have n-1 degrees of freedom
 - branch lengths in unrooted (non-ultrametric) tree have 2n-3 degrees of freedom
 - \Rightarrow UPGMA is less prone to overfitting than NJ
- \bullet both UPGMA and NJ are computationally efficient $\mathcal{O}(n^3)$ for naive implementations

Exercises: Theory

Exercises 15.1–15.5 (pages 535/536) from Ewens and Grant (2005)

Exercises: Programming

- Install the R-packages ape and phangorn.
- Type in and run the R-code shown in these slides. Play around with modified distance matrices and different options of the plot.phylo command for trees.
- Implement UPGMA and NJ yourself.

Exercises

Ewens, W. and G. Grant (2005). *Statistical Methods in Bioinformatics: An Introduction*. Springer, New York.

- Nunn, C. L. (2011). *The Comparative Approach in Evolutionary Anthropology and Biology*. The University of Chicago Press, Chicago.
- Saitou, N. and M. Nei (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Molecular biology and evolution*, **4**(4):406–425.