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Problems for classical GT

multiple equilibria ⇒ no
predictions possible

“perfectly rational player” is too
strong an idealization
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Evolutionary Game Theory

populations of players

individuals are
(genetically) programmed
for certain strategy

individuals replicate and
thereby pass on their
strategy
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Utility and fitness

number of offspring is monotonically related to average
utility of a player

high utility in a competition means the outcome improves
reproductive chances (and vice versa)

number of expected offspring (Darwinian “fitness”)
corresponds to expected utility against a population of
other players

genes of individuals with high utility will spread
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Extinction of non-rationalizable strategies

strictly dominated strategies always have less-than-average
reproduction rate

their proportion thus converges towards zero

once a strictly dominated strategies dies out (or almost
dies out), it can be ignored in the utility matrix

corresponds to elimination of a strictly dominated strategy

process gets iterated in evolutionary dynamics

long-term effect:

Theorem

If a strategy ai is iteratively strictly dominated, then

lim
t→∞

pt(ai ) = 0
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Evolutionary stability (cont.)

replication sometimes unfaithful (mutation)

population is evolutionarily stable ; resistant against
small amounts of mutation

Maynard Smith (1982): static characterization of

Evolutionarily Stable Strategies

(ESS) in terms of utilities only

related to Nash equilibria, but slightly different
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Evolutionary stability (cont.)

Rock-Paper-Scissor

R P S

R 0 -1 1

P 1 0 -1

S -1 1 0

one symmetric Nash equilibrium: (1
3 , 1

3 , 1
3)

not evolutionarily stable though
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Evolutionary stability (cont.)

Pigeon orientation game

“players” are pigeons that go together on a journey

A-pigeons can find their way back, B-pigeons cannot

A B

A 1 1

B 1 0
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Evolutionary stability (cont.)

A is a non-strict Nash equilibrium, but nevertheless
evolutionarily stable

to be evolutionarily stable, a population must be able
either

to fight off invaders directly (strict Nash equilibrium)
to successfully invade the invaders (non-strict Nash
equilibrium)
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Evolutionary Stable Strategy

Definition

The mixed strategy α is an Evolutionarily Stable Strategy in a
symmetric two-person game iff

U(α, α) ≥ U(α′, α) for all α, and

if U(α, α) = U(α′, α) for some α′ 6= α, then
U(α, α′) > U(α′, α′).

Strict Nash Equilibria
⊂

Evolutionarily Stable Strategies
⊂

Nash Equilibria
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The Replicator Dynamics

implicit assumption behind notion of ESS

Populations are (practically) infinite.
Each pair of individuals is equally likely to interact.
The expected number of offspring of an individual (i.e., its
fitness in the Darwinian sense) is monotonically related to
its average utility.

can be made explicit in a dynamic model
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Replicator Dynamics (cont.)

easiest correlation between utility and fitness:

expected number of offspring

u(i , j) = of an individual of type i

in a j-population
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Replicator Dynamics (cont.)

Suppose

time is discrete

in each round, each pair of players is equally likely to
interact
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Replicator Dynamics (cont.)

Discrete time dynamics:

Ni (t + 1) = Ni (t) + Ni (t)(
n∑

j=1

xju(i , j)− d)

N(t) ... population size at time t
Ni (t) ... number of players playing strategy si

xj(t) ...
Nj (t)
N(t)

d ... death rate
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Replicator Dynamics (cont.)

generalizing to continuous time:

Ni (t + ∆t) = Ni + ∆tNi (
n∑

j=1

xju(i , j)− d)

thus

∆Ni

∆t
= Ni (

n∑
j=1

xju(i , j)− d)
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Replicator Dynamics (cont.)

if ∆t → 0

dNi

dt
= Ni (

n∑
j=1

xju(i , j)− d)
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Replicator Dynamics (cont.)

size of entire population may also change:

N(t + ∆t) =
n∑

i=1

(Ni + ∆t(Ni

n∑
j=1

xju(i , j)− d))

= N + ∆t(N
n∑

i=1

xi

n∑
j=1

xju(i , j))

hence

dN

dt
= N(

n∑
i=1

xi (
n∑

j=1

xju(i , j)− d))
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Replicator Dynamics (cont.)

let

n∑
j=1

xju(i , j) = ũi

n∑
i=1

xi ũi = ũ

then we have

dNi

dt
= Ni (ũi − d)

dN

dt
= N(ũ − d)
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Replicator dynamics (cont.)

remember some calculus?(u

v

)′
=

u′v − uv ′

v2

dxi

dt
=

(NNi (ũi − d)− (NiN(ũ − d)))

N2

= xi (ũi − ũ)
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Replicator dynamics (cont.)

remember some calculus?(u

v

)′
=

u′v − uv ′

v2

dxi

dt
=

(NNi (ũi − d)− (NiN(ũ − d)))

N2

= xi (ũi − ũ)
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Pigeon orientation

ESSs correspond
to asymptotically
stable states

a.k.a. point
attractors

sample dynamics:
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t

x-axis: time
y-axis: proportion of A-players
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Rock-Paper-Scissor again

three-strategy game: two
independent variables

number of R-players
number of P-players

number of S-players follows
because everything sums up to 1

supressing time dimension gives
orbits

R

S
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Asymmetric games

symmetric games:

same strategy set for both players
uA(i , j) = uB(j , i) for all strategies si , sj
evolutionary interpretation: symmetric interaction within
one population

asymmetric games:

players have different strategy sets or utility matrices
evolutionary interpretation

different roles within one population (like incumbent vs.
intruder, speaker vs. hearer, ...), or
interaction between disjoint populations

evolutionary behavior differs significantly!
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Asymmetric games (cont.)

Hawks and Doves

H D

H 1,1 7,2

D 2,7 3,3

can be interpreted symmetrically or asymmetrically

symmetric interpretation:

hawks prefer to interact with doves and vice versa
ESS: 80% hawks / 20% doves
both strategies have average utility of 2.2
dynamics:
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Symmetric Hawk-and-doves

if hawks
exceed
80%, doves
thrive, and
vice versa

80:20 ratio
is only
attractor
state
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Asymmetric Hawks-and-doves

suppose two-population setting:

both A and B come in hawkish and dovish variant
everybody only interacts with individuals from opposite
“species”
excess of A-hawks helps B-doves and vice versa
population push each other into opposite directions
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Hawks and doves

80:20 ratio
in both
populations
is stationary

not an
attractor,
but repellor
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Asymmetric stability

crucial difference to symmetric games:
mutants do not play against themselves

makes second clause of the symmetric ESS superfluous

Theorem (Selten 1980)

In asymmetric games, a configuration is an ESS iff it is a strict
Nash equilibrium.
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Asymmetric replicator dynamic

dxi

dt
= xi (

n∑
j=1

yjuA(i , j)−
n∑

k=1

xk

n∑
j=1

yjuA(k, j))

dyi

dt
= yi (

m∑
j=1

xjuB(i , j)−
n∑

k=1

yk

m∑
j=1

xjuB(k, j))

xi ... proportion of sA
i within the A-population

yi ... proportion of sB
i within the B-population
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Symmetrizing asymmetric games

asymmetric games can be “symmetrized”

correspondig symmetric game shares Nash equilibria and
ESSs

new strategy set:

SAB = SA × SB

new utility function

uAB(〈i , j〉, 〈k, l〉) = uA(i , l) + uB(j , k)
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Exercises

1 Find the symmetric ESSs of the following games (provided
they exist):

Prisoner’s dilemma
Stag hunt

2 Find the asymmetric ESSs of the following games (again,
provided they exist):

Bach or Stravinsky
Matching pennies

3 Symmetrize the asymmetric version of Hawks and Doves
and find the symmetric ESSs of the result. Which
configuration in the original game do they correspond to?
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