Formal and computational models of language evolution

Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de

September 21, 2006

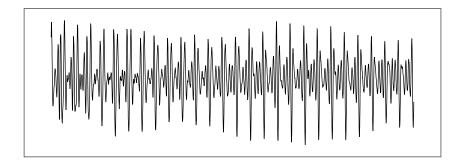
JSSECL 2006

Gerhard Jäger Formal and computational models of language evolution

・ロン ・回 と ・ ヨン ・ ヨン

- micro-variation in the inventory of vowels between languages: every language is different
- however, very strong tendencies:
 - most languages have five vowels
 - (almost) every language has [a], [i] and [u] like vowels
 - most vowel inventories are peripheral and symmetric etc.
- proposal (see for instance de Boer 2001):

Vowel inventories must be evolutionarily stable!


Articulation

- speech sound
- voiced
- no constriction of the vocal tract
- vowel quality depends on
 - position of tongue
 - gesture of the lips
 - ...

・ロン ・回 と ・ ヨン ・ ヨン

Acoustics

• periodic sonic wave

Figure: Amplitude of the vowel /u/

Gerhard Jäger Formal and computational models of language evolution

∃ >

Acoustics

• spectral analysis:

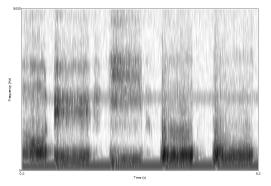


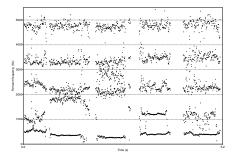
Figure: Spectrogramm of /a/-/e/-/i/-/o/-/u/

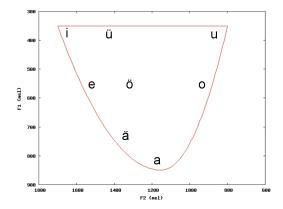
Gerhard Jäger

← □ ▷ < ♂ ▷ < ≥ ▷ < ≥ ▷ < ≥ ▷ < ≥ ○ </p>
Formal and computational models of language evolution

Acoustics

- vowel is superposition of discrete harmonic waves:
 - fundamental frequency
 - formants




Figure: first five formants of /a-e-i-o-u/

Gerhard Jäger Formal and computational models of language evolution

Image: A math a math

Acoustics

• first two formants are crucial for identification of vowels

Figure: F1/F2-plane: German vowels

Formal and computational models of language evolution

æ

Acoustics

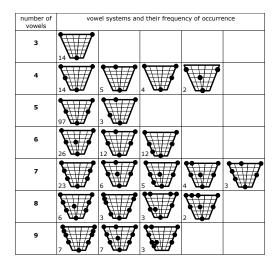
• more realistic picture:

Figure: F1/F2-plane: German vowels

Gerhard Jäger

Formal and computational models of language evolution

Universal tendencies of vowel inventories


- comparison of vowel inventories in hundreds of languages reveals
 - virtually all languages use the vowels [a], [i], [u]
 - almost all vowels in all languages are peripheral
 - vowel inventories tend to be symmetrical

• ...

Liljencrants and Lindblom 1972

- vowel systems tend to maximize perceptual distance between vowels
- can be modeled as minimizing potential energy of a vowel system
- energy is proportional to sum of inverse squared distances
- fairly good typological predictions

Survey of 500+ vowel inventories

(from Schwartz et al. 1997, based on the UCLA Phonetic Segment Inventory Database)

Gerhard Jäger Formal and computational models of language evolution

(ロ) (同) (E) (E) (E)

Communication via the vowel space

Game theoretic model

- Signaling game
- types: between 3 and 9 vowel categories
- signals: each point within the two-dimensional (F1/F2) vowel space

(本間) (本語) (本語)

One round of an evolutionary signaling game

- nature picks a vowel category v_S and shows it to S
- S picks a point p_{intend} in the vowel space
- a normally distributed random variable is added to *p_{intend}*, yielding *p_{prod}*
- another normally distributed random variable is added to p_{prod} , yielding p_{perc}
- R observes p_{perc} and picks a vowel category v_R
- if $v_S = v_R$, both players score a point

・ロン ・回 と ・ 回 と ・ 回 と

Exemplar dynamics

- empiricist view on language processing/language structure
- popular in functional linguistics (esp. phonology and morphology) and in computational linguistics (aka. "memory-based")

Basic idea

- large amounts of previously encountered instances ("exemplars") of linguems are stored in memory
- very detailed representation of exemplars
- little abstract categorization
- similarity metric between exemplars
- new linguemes are processed in a similarity-based way

Exemplar dynamics: implementation

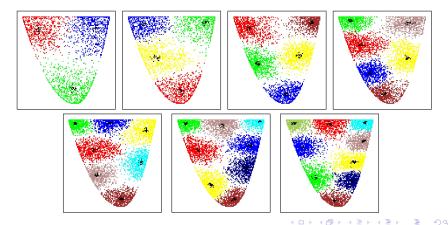
Sender

- chooses p_{intend} at random from multiset $\{p|\langle v_S, p\rangle \in \text{memory}\}$
- if communication succeeds (v_S = v_R), oldest item in memory is replaced with (v_S, p_{prod})
- otherwise memory remains unchanged

Receiver

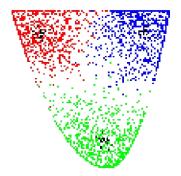
- v_H is picked such that min{d(p_{perc}, p)|⟨v_H, p⟩ ∈ memory} is minimized
- if communication succeeds (v_S = v_R), oldest item in memory is replaced by ⟨v_R, p_{perc}⟩
- otherwise memory remains unchanged

(ロ) (同) (E) (E) (E)

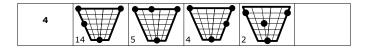

Setup

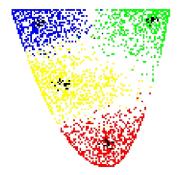
- population of 20 agents
- each agent has a memory of 4000 previous observations per vowel category (initialized with random values)
- 300k iterations of the signaling game
- sender and receiver are picked at random

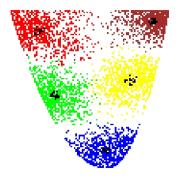
Inspired by much more sophisticated simulations by Bart de Boer.

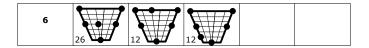

Simulation results

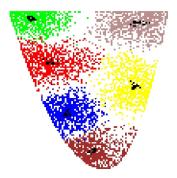
- black dots display average sender strategy for each agent and vowel category)
- colored dots display receiver strategies (colors represent vowel categories)

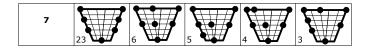


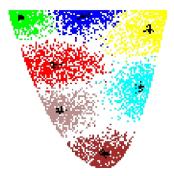

Formal and computational models of language evolution

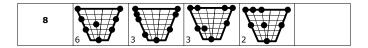

<ロ> (四) (四) (三) (三) (三)

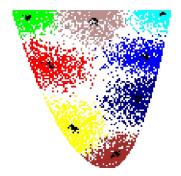


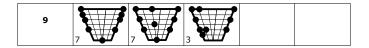

(ロ) (四) (注) (注) (注) [

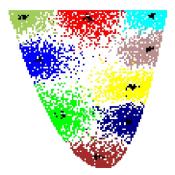



<ロ> (四) (四) (三) (三) (三)




(ロ) (四) (注) (注) (注) [




<ロ> (四) (四) (三) (三) (三)

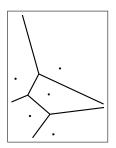
<ロ> (四) (四) (三) (三) (三)

Gerhard Jäger Formal and computational models of language evolution

< □ > < □ > < □ > < □ > < □ > < □ > = □

- more than half of the typologically dominant patterns correspond to (experimentally determined) ESSs (150 out of 264 in the database)
- five out of seven ESSs correspond to empirically attested vowel systems
- even the two outliers look natural (symmetric systems with peripheral prototypes)

ヘロン 人間 とくほど くほとう


ESS under replicator dynamics: strict Nash equilibria

- sender strategy: mapping from vowel categories to points in the vowel space
- receiver strategy: categorization of points

イロト イポト イヨト イヨト

Voronoi tesselations

- suppose receiver strategy *R* is given and known to the sender: which sender strategy would be the best response to it?
 - every signal p has a "prototypical" interpretation: R(p)
 - for every vowel category v: S's best choice is to choose the p that minimizes the distance between p and R(p)
 - optimal *S* thus induces a **partition** of the meaning space
 - Voronoi tesselation, induced by the range of *R*

→ 同 → → 目 → → 目 →

- numeric calculation of the ESSs for the human vowel space
- Exemplar Dynamics is similar but not identical to replicator dynamics
- conjecture: as the variance of the random variables goes to 0, the attractor states of the exemplar dynamics converges towards SNEs

Gärdenfors (2000):

- meanings are arranged in **conceptual spaces**
- conceptual space has geometrical structure
- dimensions are founded in perception/cognition

・ロン ・回と ・ヨン・

Gärdenfors (2000):

- meanings are arranged in **conceptual spaces**
- conceptual space has geometrical structure
- dimensions are founded in perception/cognition

Convexity

A subset C of a conceptual space is said to be *convex* if, for all points x and y in C, all points between x and y are also in C.

・ロット (四) (日) (日)

Gärdenfors (2000):

- meanings are arranged in **conceptual spaces**
- conceptual space has geometrical structure
- dimensions are founded in perception/cognition

Convexity

A subset C of a conceptual space is said to be *convex* if, for all points x and y in C, all points between x and y are also in C.

Criterion P

A *natural property* is a convex region of a domain in a conceptual space.

- spatial dimensions: *above, below, in front of, behind, left, right, over, under, between ...*
- temporal dimension: early, late, now, in 2005, after, ...
- sensual dimenstions: loud, faint, salty, light, dark, ...
- abstract dimensions: cheap, expensive, important, ...

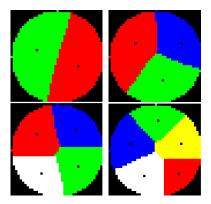
ヘロン 人間 とくほど くほとう

Signaling game with continuous meaning space

- two players:
 - Speaker
 - Hearer
- infinite set of Meanings, arranged in a finite metrical space distance is measured by function d : M² → R
- finite set of **F**orms
- sequential game:
 - nature picks out $m \in M$ according to some probability distribution p and reveals m to S
 - 2 S maps m to a form f and reveals f to H
 - **3** H maps f to a meaning m'

Signaling game with continuous meaning space

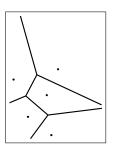
- Goal:
 - optimal communication
 - both want to minimize the distance between m and m'
- Strategies:
 - speaker: mapping S from M to F
 - hearer: mapping H from F to M
- Average utility: (identical for both players)


$$u(S,H) = \int_{M} p_m \times \exp(-d(m,H(S(m)))^2) dm$$

vulgo: average similarity between speaker's meaning and hearer's meaning

イロト イボト イヨト イヨト 二日

Simulations


- two-dimensional circular meaning space
- discrete approximation
- uniform distribution over meanings
- initial stratgies are randomized
- update rule according to (discrete time version of) replicator dynamics

▲ □ ► ▲ □ ►

- ∢ ⊒ ⊳

- suppose *H* is given and known to the speaker: which speaker strategy would be the best response to it?
 - every form *f* has a "prototypical" interpretation: *H*(*f*)
 - for every meaning *m*: S's best choice is to choose the *f* that minimizes the distance between *m* and *H*(*f*)
 - optimal *S* thus induces a **partition** of the meaning space
 - Voronoi tesselation, induced by the range of *H*

(4 回) (4 回) (4 回)

Lemma

The Voronoi tessellation based on a Euclidean metric always results in a partioning of the space into convex regions.

Gerhard Jäger Formal and computational models of language evolution

▲祠 ▶ ▲ 臣 ▶ ★ 臣 ▶

- best response of H to a given speaker strategy S not as easy to characterize
- general formula

$$H(f) = \arg \max_{m} \int_{S^{-1}(f)} p_{m'} \times \exp(-d(m, m')^2) dm'$$

- such a hearer strategy always exists
- linguistic interpretation: H maps every form f to the prototype of the property S⁻¹(f)

・ロン ・回と ・ヨン・

Lemma

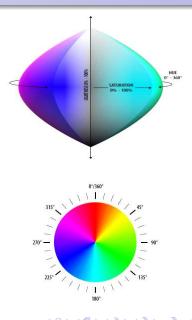
In every ESS $\langle S, H \rangle$ of the naming game, the partition that is induced by S^{-1} on M is the Voronoi tesselation induced by H[F].

Lemma

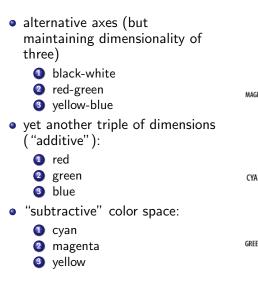
In every ESS (S, H) of the naming game, the partition that is induced by S^{-1} on M is the Voronoi tesselation induced by H[F].

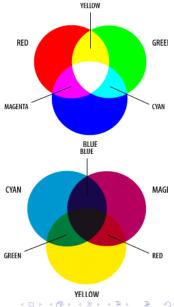
Theorem

For every form f, $S^{-1}(f)$ is a convex region of M.


The color space

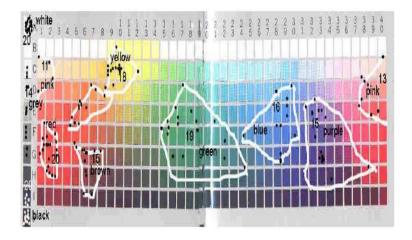
- physical color space is of infinite dimensionality
- psychological color space has only three dimensions:



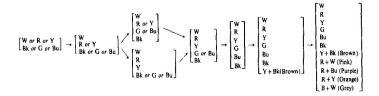

2 hue

saturation

The color space



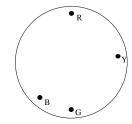
- Berlin and Kay (1969): study of the typology of color words
- subjects with typologically distant native languages
- subjects were asked about prototype and extension of the basic color words of their native language
- English: 11 basic colors



Berlin and Kay's study

Gerhard Jäger Formal and computational models of language evolution

Implicational hierarchies

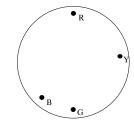


< □ > < @ > < 注 > < 注 > ... 注

A toy example

suppose

- circular two-dimensional meaning space
- four meanings are highly frequent
- all other meanings are negligibly rare
- let's call the frequent meanings Red, Green, Blue and Yellow

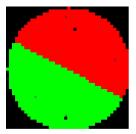

 $p_i(\text{Red}) > p_i(\text{Green}) > p_i(\text{Blue}) > p_i(\text{Yellow})$

・ 同・ ・ ヨ・

A toy example

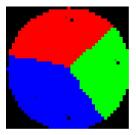
suppose

- circular two-dimensional meaning space
- four meanings are highly frequent
- all other meanings are negligibly rare
- let's call the frequent meanings Red, Green, Blue and Yellow



 $p_i(\text{Red}) > p_i(\text{Green}) > p_i(\text{Blue}) > p_i(\text{Yellow})$

Yes, I made this up without empirical justification.


- ∢ ⊒ ⊳

- suppose there are just two forms
- only one Strict Nash equilibrium (up to permuation of the forms)
- induces the partition {Red, Blue}/{Yellow, Green}



- 4 回 ト 4 ヨ ト 4 ヨ ト

- if there are three forms
- two Strict Nash equilibria (up to permuation of the forms)
- partitions {Red}/{Yellow}/{Green, Blue} and {Green}/{Blue}/{Red, Yellow}
- only the former is **stochastically stable** (resistent against random noise)

- if there are four forms
- one Strict Nash equilibrium (up to permuation of the forms)
- partitions {Red}/{Yellow}/{Green}/{Blue}

・ロン ・回 と ・ ヨン ・ ヨン

Meaning spaces

- assumption: utility is correlated with similarity between speaker's meaning and hearer's meaning
- consequences:
 - convexity of meanings
 - prototype effects
 - uneven probability distribution over meanings leads to the kind of implicational universals that are known from typology of color terms