Language, Games and Evolution *Evolutionary Game Theory*

Gerhard Jäger

jaeger@ling.uni-potsdam.de

3rd NASSLLI, UCLA

June 2004

Language, Games and Evolution - p.1/106

Problems for classical GT

- multiple equilibria \Rightarrow no predictions possible
- "perfectly rational player" is too strong an idealization

Evolutionary Game Theory

- populations of players
- individuals are (genetically) programmed for certain strategy
- individuals replicate and thereby pass on their strategy

Utility and fitness

- number of offspring is monotonically related to average utility of a player
- high utility in a competition means the outcome improves reproductive chances (and vice versa)
- number of expected offspring (Darwin's "fitness") corresponds to expected utility against a population of other players
- genes of individuals with high utility will spread

Evolutionary stability

- Darwinian evolution predicts ascent towards local fitness maximum
- once local maximum is reached: stability
- only random events (genetic drift, external forces) can destroy stability
- central question for evolutionary model: what are stable states?

- replication sometimes unfaithful (mutation)
- population is evolutionarily stable ~> resistant against small amounts of mutation
- Maynard Smith (1982): static characterization of

Evolutionarily Stable Strategies

(ESS) in terms of utilities only

related to Nash equilibria, but slightly different

Rock-Paper-Scissor

	R	Ρ	S
R	0	-1	1
Ρ	1	0	-1
S	-1	1	0

- one Nash equilibrium: $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$
- not evolutionarily stable though

Pigeon orientation game

- "players" are pigeons that go together on a journey
- A-pigeons can find their way back, B-pigeons cannot

- A-is a non-strict Nash equilibrium, but nevertheless evolutionarily stable
- to be evolutionarily stable, a population must be able either
 - to fight off invaders directly (strict Nash equilibrium)
 - to successfully invade the invaders (non-strict Nash equilibrium)

Evolutionary Stable Strategy

s is an Evolutionarily Stable Strategy iff

- $u(s,s) \ge u(t,s)$ for all t, and
- if u(s,s) = u(t,s) for some $t \neq s$, then u(s,t) > u(t,t).

Strict Nash Equilibria C Evolutionarily Stable Strategies C Nash Equilibria

The Replicator Dynamics

implicit assumption behind notion of ESS

- Populations are (practically) infinite.
- Each pair of individuals is equally likely to interact.
- The expected number of offspring of an individual (i.e., its fitness in the Darwinian sense) is monotonically related to its average utility.

can be made explicit in a dynamic model

easiest correlation between utility and fitness:

expected number of offspringu(i,j) = of an individual of type iin a j-population

suppose

- time is discrete
- in each round, each pair of players is equally likely to interact

discrete time dynamics:

$$N_i(t+1) = N_i(t) + N_i(t) (\sum_{j=1}^n x_j u(i,j) - d)$$

N(t) ... population size at time t $N_i(t)$... number of players playing strategy s_i $x_j(t)$... $\frac{N_j(t)}{N(t)}$

 $d \dots$ death rate

generalizing to continuous time:

$$N_i(t + \Delta t) = N_i + \Delta t (N_i \sum_{j=1}^n x_j u(i, j) - d)$$

thus

$$\frac{\Delta N_i}{\Delta t} = N_i \left(\sum_{j=1}^n x_j u(i,j) - d\right)$$

if $\Delta t \to 0$

$$\frac{dN_i}{dt} = N_i(\sum_{j=1}^n x_j u(i,j) - d)$$

size of entire population may also change:

$$N(t + \Delta t) = \sum_{i=1}^{n} (N_i + \Delta t (N_i \sum_{j=1}^{n} x_j u(i, j) - d))$$

= $N + \Delta t (N \sum_{i=1}^{n} x_i \sum_{j=1}^{n} x_j u(i, j))$

hence

$$\frac{dN}{dt} = N(\sum_{i=1}^{t} x_i(\sum_{j=1}^{n} x_j u(i,j) - d))$$

let

$$\sum_{j=1}^{n} x_j u(i,j) = \tilde{u}_i$$
$$\sum_{i=1}^{n} x_i \tilde{u}_i = \tilde{u}$$

then we have

$$\frac{dN_i}{dt} = N_i(\tilde{u}_i - d)$$
$$\frac{dN}{dt} = N(\tilde{u} - d)$$

remember some calculus?

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$\frac{dx_i}{dt} = \frac{(NN_i(\tilde{u}_i - d) - (N_iN(\tilde{u}_i - d)))}{N^2}$$
$$= x_i(\tilde{u}_i - \tilde{u})$$

Pigeon orientation

- ESSs correspond to
 asymptotically
 stable states
- a.k.a. attractors
- sample trajectories:

x-axis: time y-axis: proportion of A-players

Rock-Paper-Scissor again

- three-strategy game: two independent variables
 - number of R-players
 - number of P-players
- number of S-players
 follows because
 everything sums up to 1
- supressing time dimension gives orbits

Asymmetric games

- symmetric games:
 - same strategy set for both players
 - $u_A(i,j) = u_B(j,i)$ for all strategies s_i, s_j
 - evolutionary interpretation: symmetric interaction within one population
- asymmetric games:
 - players have different strategy sets or utility matrices
 - evolutionary interpretation
 - different roles within one population (like incumbent vs. intruder, speaker vs. hearer, ...), or
 - interaction between disjoint populations
- evolutionary behavior differs significantly!

Asymmetric games (cont.)

Hawks and Doves

- can be interpreted symmetrically or asymmetrically
- symmetric interpretation:
 - hawks prefer to interact with doves and vice versa
 - ESS: 80% hawks / 20% doves
 - both strategies have average utility of 2.2
 - trajectories:

Symmetric Hawk-and-doves

- if hawks exceed 80%, doves thrives, and vice versa
- 80:20 ratio is only attractor state

Asymmetric Hawks-and-doves

- suppose two-population setting:
 - both A and B come in hawkish and dovish variant
 - everybody only interacts with individuals from opposite "species"
 - excess of A-hawks helps B-doves and vice versa
 - population push each other into opposite directions

Hawks and doves

- 80:20 ratio in both populations is stationary
- not an attractor, but repellor

Asymmetric stability

- crucial difference to symmetric games:
 mutants do not play against themselves
- makes second clause of the symmetric ESS superfluous

In asymmetric games, a configuration is an ESS iff it is a strict Nash equilibrium.

Asymmetric replicator dynamic

$$\frac{dx_i}{dt} = x_i \left(\sum_{j=1}^n y_j u_A(i,j) - \sum_{k=1}^n x_k \sum_{j=1}^n y_j u_A(k,j)\right)$$
$$\frac{dy_i}{dt} = y_i \left(\sum_{j=1}^n x_j u_B(i,j) - \sum_{k=1}^n y_k \sum_{j=1}^n x_j u_B(k,j)\right)$$

 x_i ... proportion of s_i^A within the *A*-population y_i ... proportion of s_i^B within the *B*-population

Symmetrizing asymmetric games

- asymmetric games can be "symmetrized"
- correspondig symmetric game shares Nash equilibria and ESSs
- new strategy set:

$$S^{AB} = S^A \times S^B$$

new utility function

$$u^{AB}(\langle i,j\rangle,\langle k,l\rangle) = u^{A}(i,l) + u^{B}(j,k)$$

Evolution in biology and linguistics

correspondence between biology and linguistics

utterance	\approx	organism
language	\approx	species
dialect	\approx	deme
idiolect	\approx	lineage

Evolution in biology and linguistics

concept of *evolution* can be applied to linguistic as well

genotype	\approx	grammatical knowledge ("langue")
phenotype	\approx	utterances ("parole")
replication	\approx	imitation

Mathematical models from evolutionary biology should be applicable to linguistics!

- Biological evolution is driven by variation and selection
- variation
 - Biology: mutations
 - Linguistics: errors, language contact, fashion...
- selection:
 - Biology: fitness = number of fertile offspring
 - Linguistics: communicative functionality, efficiency, social prestige, learnability, ...

EGT and pragmatics

Horn strategies: prototypical meanings tend to go with simple expressions and less prototypical meanings with complex expressions.

- (1) a. John went to church/jail. (prototypical interpretation)b. John went to the church/jail. (literal interpretation)
- (2) a. I am going to marry you. (no indirect speech act)b. I will marry you. (indirect speech act)
- (3) a. I need a new driller/cooker.b. I need a new drill/cook.

Horn strategies

simple game:

- players: speaker and hearer
- two forms: f_0 (short) and f_1 (long)
- two meanings: m_0 (frequent) and m_1 (rare)
- speaker strategies: mappings from meanings to forms
- hearer strategies: mappings from forms to meanings

Speaker strategies

Hearer strategies

Utility of Horn games

- whether communication works depends both on speaker strategy S and hearer strategy H
- two factors for functionality of communication
 - communicative success ("hearer economy")

$$\delta_m(S,H) = \begin{cases} 1 & \text{iff } H(S(m)) = m \\ 0 & \text{else} \end{cases}$$

least effort ("speaker economy")

 $cost(f) \dots measure of complexity of expression$

Utility of Horn games

$$u_{s}(S,H) = \sum_{m} p_{m} \times (\delta_{m}(S,H) - \textit{cost}(S(m)))$$
$$u_{h}(S,H) = \sum_{m} p_{m} \times \delta_{m}(S,H)$$

 $p \dots$ probability distribution over meaning types

Utility of Horn game

Let's make up some numbers:

- $p(m_0) = .75$
- $p(m_1) = .25$
- **•** $cost(f_0) = .1$
- **•** $cost(f_1) = .2$

Utility of Horn game

	H_1	L	H_2	2	H	3	E	I_4
S_1	.875	1.0	125	0.0	.625	.75	.125	.25
S_2	175	0.0	.825	1.0	.575	.75	.25	.075
S_3	.65	.75	.15	.25	.65	.75	.15	.25
S_4	.05	.25	.55	.75	.55	.75	.05	.25

Utility of Horn game

	H_1	L	H_2	2	H	3	E	I_4
S_1	.875	1.0	125	0.0	.625	.75	.125	.25
S_2	175	0.0	.825	1.0	.575	.75	.25	.075
S_3	.65	.75	.15	.25	.65	.75	.15	.25
S_4	.05	.25	.55	.75	.55	.75	.05	.25

 $\bullet \longrightarrow \bullet \bullet \longrightarrow \bullet$

 $\bullet \longrightarrow \bullet \bullet \longrightarrow \bullet$

Language, Games and Evolution - p.40/106

The problem of equilibrium selection

- both Horn and anti-Horn are evolutionarily stable
- EGT explains the aversion of natural against synonymy and ambiguity
- preference for Horn not directly explainable in standard EGT

The problem of equilibrium selection

- rationalistic considerations favor Horn over anti-Horn:
 - Horn strategy is Pareto efficient (nobody can do better in absolute terms)
 - Horn strategy risk dominates anti-Horn (if you know the population is in an equilibrium but you do not know in which one, going for Horn is less risky than anti-Horn)
- replicator dynamics favors Horn over anti-Horn:
 - complete random state evolves to Horn/Horn
 - basin of attraction of Horn is about 20 times as large as basin of attraction of anti-Horn (numerical approximation—does anybody know how to do this analytically?)

Trajectories starting from random state

The evolution of differential case marking

Ways of argument identification

transitivity may lead to ambiguity

3. case

die Frau, die er kennt die Frau, die ihn kennt the woman that he knows the woman that knows him

Language, Games and Evolution - p.46/106

 Suppose one argument is a pronoun and one is a noun (or a phrase)

{I, BOOK, KNOW}

- both conversants have an interest in successful communication
- case marking (accusative or ergative) is usually more costly than zero-marking (nominative)
- speaker wants to avoid costs

speaker strategies	hearer strategies
always case mark the object	ergative is agent
(accusative)	and accusative object
always case mark the agent (ergative)	pronoun is agent
case mark the object if it is a pronoun	pronoun is object
	pronoun is agent
	unless it is accusative
÷	

Statistical patterns of language use

four possible clause types:

	0/р	O/n
A/p	he knows it	he knows the book
A/n	the man knows it	the man knows the book

statistical distribution (from a corpus of spoken English)

	O/p	O/n
A/p	pp = 198	pn = 716
A/n	np = 16	nn = 75

pn ≫ np

- functionality of speaker strategies and hearer strategies depends on various factors:
 - How often will the hearer get the message right?
 - How many case markers does the speaker need per clause — on average?

speaker strategies that will be considered:

agent is pronoun	agent is noun	object is pronoun	object is noun
e(rgative)	e(rgative)	a(ccusative)	a(ccusative)
е	е	а	z(ero)
e	е	Z	а
е	е	Z	Z
е	Z	а	а
Z	е	Z	Z
Z	Z	а	а
Z	Z	а	Z
Z	Z	Z	а
Z	Z	Z	Z

- hearer strategies:
 - strict rule: ergative means "agent", and accusative means "object"
 - elsewhere rules:
 - 1. SO: "The first phrase is always the agent."
 - 2. *pA*: "Pronouns are agents, and nouns are objects."
 - 3. *pO*: "Pronouns are objects, and nouns are agents."
 - 4. OS: "The first phrase is always the object."

The game of case

- strategy space and utility function are known
- probability of meaning types can be estimated from corpus study
- hard to estimate how the complexity of a case morpheme compares to its benefit for disambiguation from the speaker perspective
- parameterized utility function

$$u(S,H) = \sum_{m} p_m \times (\delta_m(S,H) - k \times cost(S(m)))$$

It us assume k = .1

Speaker	Hearer strategies				
strategies	SO	pA	pO	OS	
eezz	0.90	0.90	0.90	0.90	
zzaa	0.90	0.90	0.90	0.90	
ezaz	0.85	0.85	0.85	0.85	
zeza	0.81	0.81	0.81	0.81	
zeaz	0.61	0.97	0.26	0.61	
ezzz	0.86	0.86	0.87	0.86	
zezz	0.54	0.89	0.54	0.54	
zzaz	0.59	0.94	0.59	0.59	
zzza	0.81	0.81	0.82	0.81	
<i>zzzz</i>	0.50	0.85	0.15	0.50	

- only one evolutionary stable state: *zeaz/pA* (*split ergative*)
- very common among Australian aborigines languages

Non-strict Nash equilibria

Why are non-strict Nash Equilibria unstable?

Dynamics without mutation

Non-strict Nash equilibria

Why are non-strict Nash Equilibria unstable?

Dynamics with mutation

If speakers get lazier...

● k = 0.45

Speaker	Hearer strategies				
strategies	SO	pA	pO	OS	
eezz	0.550	0.550	0.550	0.550	
zzaa	0.550	0.550	0.550	0.550	
ezaz	0.458	0.458	0.458	0.458	
zeza	0.507	0.507	0.507	0.507	
zeaz	0.507	0.863	0.151	0.507	
ezzz	0.545	0.538	0.553	0.545	
zezz	0.505	0.861	0.148	0.505	
zzaz	0.510	0.867	0.154	0.510	
zzza	0.539	0.531	0.547	0.539	
zzzz	0.500	0.849	0.152	0.500	

... and lazier ...

• k = 0.53

Speaker	Hearer strategies				
strategies	SO	pA	pO	OS	
eezz	0.470	0.470	0.470	0.470	
zzaa	0.470	0.470	0.470	0.470	
ezaz	0.368	0.368	0.368	0.368	
zeza	0.436	0.436	0.436	0.436	
zeaz	0.483	0.839	0.127	0.483	
ezzz	0.473	0.465	0.480	0.473	
zezz	0.497	0.854	0.141	0.497	
zzaz	0.494	0.850	0.137	0.494	
zzza	0.476	0.468	0.484	0.476	
zzzz	0.500	0.848	0.152	0.500	

... and lazier...

▶ k = 0.7

Speaker	Hearer strategies				
strategies	SO	pA	pO	OS	
eezz	0.300	0.300	0.300	0.300	
zzaa	0.300	0.300	0.300	0.300	
ezaz	0.177	0.177	0.177	0.177	
zeza	0.287	0.287	0.287	0.287	
zeaz	0.431	0.788	0.075	0.431	
ezzz	0.318	0.310	0.326	0.318	
zezz	0.482	0.838	0.126	0.482	
zzaz	0.457	0.814	0.101	0.457	
zzza	0.343	0.335	0.350	0.343	
zzzz	0.500	0.848	0.152	0.500	

▶ k = 1

Speaker	Hearer strategies					
strategies	SO	pA	pO	OS		
eezz	0.000	0.000	0.000	0.000		
zzaa	0.000	0.000	0.000	0.000		
ezaz	-0.160	-0.160	-0.160	-0.160		
zeza	0.024	0.024	0.024	0.024		
zeaz	0.340	0.697	-0.016	0.340		
ezzz	0.045	0.037	0.053	0.045		
zezz	0.455	0.811	0.099	0.455		
zzaz	0.394	0.750	0.037	0.394		
zzza	0.106	0.098	0.144	0.106		
zzzz	0.500	0.848	0.152	0.500		

Taking stock

zeaz/pA
split ergative
Australian languages

zzaz/pA differential object marking English, Dutch, ... *ezzz/pO* **inverse DOM**

zezz/pA differential subject marking several caucasian languages

zzza/pO inverse DSM Nganasan

zzzz/pAno case marking Chinese, Thai zzza/pO

zzzz/pA

Taking stock

- only very few languages are not evolutionary stable in this sense zzaa: Hungarian, ezza: Arrernte, eeaa: Wangkumara
- curious asymmetry: if there are two competing stable states, one is common and the other one rare
- similar pattern as with Horn vs. anti-Horn

Alle equilibria are stable, but some equilibria are more stable than others.

Stochastic EGT

Language, Games and Evolution - p.64/106

Random mutation and stability

- idealizations of standard Evolutionary Game Theory
 - populations are (practically) infinite
 - mutations rate is constant and low
- better model (Young 1993; Kandori, Mailath and Rob 1993)
 - finite population
 - mutation is noisy

Consequences of finite population model

- every mutation barrier will occasionally be taken
- no absolute stability
- if multiple Strict Nash Equilibria coexist, system will oscillate between them
- some equilibria are more stable than others
- system will spend most of the time in most robustly stable state
- stochastically stable states

A particular model

- discrete time/finite population version of replicator dynamics
- mutations occur rarely (most generations have no mutants at all)
- if mutation occurs, each individual in this generation has same probability to be a mutant
- mutation frequency and mutation rate equal for both populations
- each strategy is equally likely for a mutant (within its population)

A simulation

Stochastic stability

- punctuated equilibria
- Iong periods of dynamic stability alternate with short transition periods
- in the long run, more time in Horn state (67% vs. 26% in anti-Horn)
- simulation suggests that Horn is stable while anti-Horn is not
- can this be proved?

Analytic considerations

- Simple recipes for finding stochastically stable state in 2×2 games
- not easily extrapolated to larger games
- basic idea:
 - calculate the height of the invasion barrier of each ESS
 - the ESSs with maximal invasion barrier is stochastically stable

Analytic considerations

- invasion barrier = amount of mutations necessary to push the system into the basin of attraction of another ESS
- Horn \Rightarrow anti-Horn: 50%
- anti-Horn \Rightarrow Horn: 47.5%
- Hence:

Horn strategy is the only stochastically stable state
Stochastic evolution of case marking

- k = 0.45
- competition between zzaz/pA and ezzz/pO
- evolution of speaker population:

Stochastic evolution of case marking

- k = 0.45
- competition between zzaz/pA and ezzz/pO
- evolution of hearer population:

Analysis

- invasion barriers:
 - differential object marking: 45.2%
 - inverse differential subject markig: 2.06%

Differential object marking is stochastically stable; inverse differential subject marking is not.

Iikewise, differential subject marking is stochastically stable while inverse differential object marking is not.

Stochastically stable states

zeaz/pA
split ergative
Australian languages

zzaz/pAdifferential object marking English, Dutch, ...

zezz/pA **differential subject marking several caucasian languages**

zzzz/pAno case marking Chinese, Thai

Conclusion

- out of $4 \times 16 = 64$ possible case marking patterns only four are stochastically stable
- vast majority of all languages that fit into this categorization are stochastically stable
- precise numbers are hard to come by though
- Induistic universals can be result of evolutionary pressure in the sense of cultural evolution

Iterated learning vs. iterated usage

- Ianguage is self-replicating system
- two modes of replication:
 - 1. (first) language acquisition
 - 2. language usage
- the modes differ in
 - selection pressure
 - source of variation
 - time scale

How do they interact?

- *replicator:* I-language in its entirety
- *interactors:* "teacher" (adult) and "student" (infant)
- *source of variation:* imperfect learning
- *time scale:* measured in decades

Usage dynamics

- *replicator:* components of I-language (lexical entries, constructions, ...)
- *interactors:* (mainly adult) language users
- *source of variation:* errors, language contact, ...
- *time scale:* detectable even within single text

The Iterated Learning Model

- formal model of acqusition dynamics
- many computational implementations (Hurford, Kirby, Briscoe, Niyogi, Berwick, ...)
- analytical mathematical formulation by Nowak (with various co-authors)

The Iterated Learning Model (cont.)

$$\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$$
$$f_j(\mathbf{x}) \doteq \sum_k x_k U_{jk}$$

- main components:
 - fitness function f
 - learning matrix Q

Fitness

- Biology: fitness = expected number of fertile offspring
- Linguistics: communicative functionality, efficiency, social prestige, ...

Fitness (cont.)

- first approximation
 - finite number of languages L_1, \dots, L_n
 - σ_{ij} ... average probability that a speaker using L_i is understood by a listener using L_j
 - c_i ... average complexity of utterances of L_i (length, entropy, whatever)
 - utility of communication between users of L_i and L_j :

$$U_{ij} = \frac{1}{2}(\sigma_{ij} + \sigma_{ji} - r(c_i + c_j))$$

Fitness (cont.)

• x_i ... relative frequency of users of L_i in proportion to total population

$$\sum_{i} x_i = 1$$

• x ... vector of relative frequencies x_1, x_2, \dots, x_n

fitness = average utility:

$$f_j(\mathbf{x}) \doteq \sum_k x_k U_{jk}$$

The learning matrix

- not every language is perfectly learnable
- Q_{ij} ... probability that an infant growing up in an L_i -environment acquires L_j

$$\sum_{j} Q_{ij} = 1$$

The learning matrix (cont.)

- simplest case:
 - identity matrix
 - infant always acquires language of environment

	L_1	L_2	L_3	• • •
L_1	1	0	0	•••
L_2	0	1	0	•••
L_3	0	0	1	•••
:		÷	÷	

 $\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$

$$\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$$

 \blacksquare probability to learn L_i from an L_j -environment

$$\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$$

- \checkmark probability to learn L_i from an L_j -environment
- fitness (= abundance of offspring of users) of L_j

$$\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$$

- probability to learn L_i from an L_j -environment
- fitness (= abundance of offspring of users) of L_j
- \bullet abundance of infants that acquire L_i

$$\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$$

- probability to learn L_i from an L_j -environment
- fitness (= abundance of offspring of users) of L_j
- abundance of infants that acquire L_i
- death rate

$$\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$$

- probability to learn L_i from an L_j -environment
- fitness (= abundance of offspring of users) of L_j
- abundance of infants that acquire L_i
- death rate
- velocity of change of abundance of L_i -speakers

$$\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$$

- probability to learn L_i from an L_j -environment
- fitness (= abundance of offspring of users) of L_j
- abundance of infants that acquire L_i
- death rate
- velocity of change of abundance of L_i-speakers
 Selection for learnability and fitness

Iterated language usage

- Justice of E-language (= population of utterances)
- each utterance is produced and perceived by language users by means of underlying grammars (= I-languages)
- replication via imitation
- dynamics describes development of I-grammar frequencies within population of utterances

$$\frac{dx_i}{dt} = x_i f_i(\mathbf{x}) - x_i \sum_j x_j f_j(\mathbf{x})$$

simplest implementation: replicator dynamics

$$\frac{dx_i}{dt} = x_i f_i(\mathbf{x}) - x_i \sum_j x_j f_j(\mathbf{x})$$

• fitness of L_i (= expected number of imitations of an utterance from L_i)

$$\frac{dx_i}{dt} = x_i f_i(\mathbf{x}) - x_i \sum_j x_j f_j(\mathbf{x})$$

- fitness of L_i (= expected number of imitations of an utterance from L_i)
- \bullet abundance of utterances from L_i in next generation

$$\frac{dx_i}{dt} = x_i f_i(\mathbf{x}) - x_i \sum_j x_j f_j(\mathbf{x})$$

- fitness of L_i (= expected number of imitations of an utterance from L_i)
- \bullet abundance of utterances from L_i in next generation
- \bullet abundance of utterances from L_i in current generation

$$\frac{dx_i}{dt} = x_i f_i(\mathbf{x}) - x_i \sum_j x_j f_j(\mathbf{x})$$

- fitness of L_i (= expected number of imitations of an utterance from L_i)
- \bullet abundance of utterances from L_i in next generation
- abundance of utterances from L_i in current generation
- velocity of change of abundance of L_i -utterances

- selection only for fitness ignores learnability
- only homogeneous populations can be attractors
- → natural languages display high amount of optionality and non-determinism

Hybrid dynamics

- both modes of replication play a role in (cultural) language evolution
- adequate dynamics should capture both
- fitness of language is arguably negligible as factor for biological reproduction rate (at least on historical time scale)
- acqusition dynamics thus simplifies to

$$\frac{dx_i}{dt} = \sum_j x_j Q_{ji} - x_i$$

Hybrid dynamics (cont.)

- Some fraction b (0 ≤ b ≤ 1) of all utterances are uttered by language acquiring infants
- rest of utterances is uttered by adults and underlies the utterance dynamics
- Jeads to hybrid utterance dynamics:

$$\frac{dx_i}{dt} = (1-b)(x_i f_i - x_i \sum_j x_j f_j) + b(\sum_j x_j Q_{ji} - x_i)$$

selection for functionality and learnability

An example: Binding Theory

- Modern English: restrictions on coreference
- (4) a. Peter_i sees him_j b. *Peter_i sees him_i
- in Old English, (4b) is okay
- until a certain age, Modern English learning infants accept/produce structures like (4b)
- unlikely that OE infants underwent a stage corresponding to ME
- ME has less ambiguity and thus higher utility though

Binding Theory (cont.)

let us assume... *•* acquisition probs.

	OE	ME
OE	1.0	0.0
ME	0.2	0.8

Binding Theory (cont.)

U-matrix

 \bullet b = 0.05

Binding Theory (cont.)

- two attractors (i.e. stable states)
 - 1. pure OE
 - 2. predominant ME (with a low probability of OE)

Binding Theory (cont.)

- acquisition dynamics also selects for high utility and high learnability
- learnability overrides utility though only one attractor

Typology of case marking

two kinds of accusative marking languages
 1. accusative is obligatory for all direct objects

like Hungarian

- (2) a. Szeretem a könyv**et**. I-LIKE THE BOOK-ACC "I like the book."
 - b. Egy ház**at** akarok. A HOUSE-ACC I-WANT "I want a house."

2. accusative only on prominent object NPs

like Hebrew: only definites have accusative
(3) a. Ha-seret her?a **?et**-ha-milxama
THE-MOVIE SHOWED ACC-THE-WAR
b. Ha-seret her?a (*?et-)milxama
THE-MOVIE SHOWED (*ACC-)WAR
(from Aissen 2003)

 utility matrix for competition between Hebrew and Hungarian type

	Hun	Heb
Hun	.1100	.1060
Heb	.1060	.1734

- complicating factor: Hungarian style production grammar + Hebrew style comprehension grammar is also a possible language
- utility matrix for competition between Hebrew and Hungarian type

	Hun	Hun/Heb	Heb
Hun	.1100	.1100	.1060
Hun/Heb	.1100	.1100	.1417
Heb	.1060	.1417	.1734

usage dynamics predicts only Hebrew to be stable

time

- Hungarian system ("All objects have accusative!") is arguably simpler than Hebrew system ("All definite objects have accusative!")
- acquistion matrix something like

	Hun	Hun/Heb	Heb
Hun	1.0	0.0	0.0
Hun/Heb	0.0	1.0	0.0
Heb	0.1	0.0	0.9

 \bullet b = 0.1

under hybrid dynamics (as under acqisition dynamics) both Hungarian and Hebrew style case systems are evolutionarily stable

Conclusion

- natural languages are shaped both by selection for learnability and selection for usability
- corresponds to replication via acquisition and replication via usage
- combined dynamics leads to refined typological predictions

Conclusion (cont.)

Question for future research

- How can the parameters of these equations (fitness, learnability matrix) be determined in a non-circular way?
- Can we observe micro-evolution directly (psycholinguistics, corpus linguistics, ...) to validate formal models?

Possible refinements

Spatial EGT:

- individuals are organized in a spatial structure
- interaction mostly with neighors
- offspring remain in neighborhood
- → many interactions between kins
- \rightsquigarrow fosters cooperation
- Network models
 - similar to spatial EGT
 - except: interaction determined by network relationships
 - fast spread of innovations in centralized networks

_