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I. Underspecification

Scope Ambiguities

I Scope ambiguities are pervasive in natural language

I Example:

Each child told two teachers a story

I Possible meaning:

There are a story and two teachers such that each child told these teachers this story.

I Formally:

∃y(story′(y) ∧ two(z, teacher
′
(z), ∀x(child

′
(x) → tell

′
(x, y, z)))

I Scope Pattern: (∃ � 2 � ∀)
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I. Underspecification

Scope Ambiguities

I Three scopal elements (here: quantified DPs), which can interact freely

⇒ six different possible permutations of these elements ⇒ six (different) readings

∀x(child
′
(x) → two(z, teacher

′
(z), ∃y(story′(y) ∧ tell

′
(x, y, z)))) (∀2∃)

∀x(child
′
(x) → ∃y(story′(y) ∧ two(z, teacher

′
(z), tell

′
(x, y, z)))) (∀∃2)

∃y(story′(y) ∧ ∀x(child
′
(x) → two(z, teacher

′
(z), tell

′
(x, y, z)))) (∃∀2)

∃y(story′(y) ∧ two(z, teacher
′
(z), ∀x(child

′
(x) → tell

′
(x, y, z)))) (∃2∀)

two(z, teacher
′
(z), ∃y(story′(y) ∧ ∀x(child

′
(x) → tell

′
(x, y, z)))) (2∃∀)

two(z, teacher
′
(z), ∀x(child

′
(x) → ∃y(story′(y) ∧ tell

′
(x, y, z)))) (2∀∃)
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I. Underspecification

Derivations à la Montague

I Derivation of those readings in the Montagovian Framework:

Order of Quantifying-In determines reading

I Distinct readings ⇐⇒ distinct derivations

Input Syntactic Logical Meaning

Derivation Form

S1 ϕ1 m1

e ... ... ... ... ...

Sn ϕn mn

Parsing Translation Interpretation
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I. Underspecification

Derivations à la Montague

Problem:

I Number of readings grows massively in the number of scopal elements in the worst case

I Well-known example:

A politician can fool most voters on some issues most of the time,
but no politician can fool all voters on every issue all of the time.

I consists of two clauses with five scopal elements each

⇒ 5! ∗ 5! = 14400 ways of combining them

I In general:

Clause contains n scopal elements ⇒ n! readings in the worst case
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I. Underspecification

Derivations à la Montague

Combinatorial Explosion:

Computation/derivation of all n! readings is. . .

1. unwarranted from a psycholinguistic point of view:

humans do not seem to carry out those computations/derivations

humans are often not even aware of ambiguities

2. inefficient concerning software implementation:

feasible algorithms ≈ polynomial-time algorithms

growth of n! is far beyond polynomial growth

I Avoid combinatorial explosion by means of underspecification
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I. Underspecification

Underspecification

I Only one syntactic analysis/derivation

I Only one underspecified representation that stands for all readings/logical forms simultaneously

I In an ideal world: only one underspecified meaning

Input Syntactic Underspecified Meaning

Derivation Representation

e S u mu

Parsing Construction Interpretation

I Defer enumeration of readings and hope that further information (discourse/world knowledge)

disambiguates

Pragmatik Kolloquium, Bielefeld 2006 8



I. Underspecification

Underspecification

I Use a meta-language to talk about the logical forms of the different readings

I Use meta-variables (handles/holes/labels) to describe parts common to the logical forms

I Use constraints to control the composition of those parts

Example:

Each child told two teachers a story.

I Common parts of the six logical forms:

X1 :∃y(story′(y) ∧X2) X3 : two(z, teacher′(z), X4) X5 :∀x(child′(x) → X6)

X7 : tell′(x, y, z)))
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I. Underspecification

Underspecification

I Constraints (where X /∗ Y means roughly part Y occurs at place X / X dominates Y )

X2 /
∗
X7 X4 /

∗
X7 X6 /

∗
X7

I graphically displayed as

X1 :∃y(story′(y) ∧X2) X3 : two(z, teacher′(z), X4) X5 :∀x(child′(x) → X6)

X7 : tell′(x, y, z)

I Plugging the parts together while respecting the constraints yields the set of licensed logical

forms.
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I. Underspecification

Partial Disambiguation

I Discourse and world knowledge can lead to partial disambiguation, i.e. rule out some of the

potentially available readings while leaving others

Example:

Each child told two teachers a story.

Six readings: ∀ � 2 � ∃ ∃ � ∀ � 2 2 � ∀ � ∃

∀ � ∃ � 2 ∃ � 2 � ∀ 2 � ∃ � ∀

... It was Alice in Wonderland.

remaining two readings: ∀ � ∃ � 2 ∃ � ∀ � 2 2 � ∀ � ∃

∀ � 2 � ∃ ∃ � 2 � ∀ 2 � ∃ � ∀
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I. Underspecification

Partial Disambiguation

I Partially disambiguated representations are created by monotonic addition of constraints to the

constraint set:

X2 /
∗
X7 X4 /

∗
X7 X6 /

∗
X7 X2 /

∗
X3 X2 /

∗
X5

I graphically represented as:

X1 :∃y(story′(y) ∧X2)

X3 : two(z, teacher′(z), X4) X5 :∀x(child′(x) → X6)

X7 : tell′(x, y, z)
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I. Underspecification

Approaches

The following approaches all share these basic characteristics but differ in the type of constraints

they use:

I Hole Semantics (Bos, 1995; Bos, 2002)

Constraints: X /∗ Y and sharing of label/hole variables

I Normal Dominance Constraints (NDC; Koller et. al., 2000; Koller, 2004)

Constraints: X /∗ Y,X 6= Y and sharing of label/hole variables

I Minimal Recursion Semantics (MRS; Copestake et. al., 1999)

Constraints: X =qeq Y (dominance sensitive to the type of intervening element) and sharing

of variables
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II. Expressive Power

Expressive Completeness

I A representational system is called expressively complete iff it is able to represent what

(pre-theoretically) needs to be represented

I For approaches to underspecification this means that they have to provide representations for

all possibly occurring scopal ambiguities

I This comprises the ambiguities of isolated sentences as well as partial disambiguations created

by further discourse or world knowledge

I To illustrate the point, let us look at a (simple-minded) use of Cooper Storage for

underspecification
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II. Expressive Power

Cooper Storage as an Approach to Underspecification

Idea: Collect all scopal elements in a set...

Each child told two teachers a story.

; {∀, ∃, 2}

...and retrieve them in some order:

{∀, ∃, 2}∀

{∃, 2} � ∀

∃

2 � ∃ � ∀

2

∃ � 2 � ∀

∃
2

{∀, 2} � ∃ {∀, ∃} � 2

∀ 2 ∀ ∃

2 � ∀ � ∃ ∀ � 2 � ∃ ∃ � ∀ � 2 ∀ � ∃ � 2
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II. Expressive Power

Cooper Storage as an Approach to Underspecification

I Underspecification would hence be achieved by retrieval of only some elements while leaving

the others in the store.

I Observation: the retrieved elements take scope below those in the store.

I This means that the represented logical forms all end in a common sequence of scopal elements:

{Q1, . . . , Qi} � Qi+1 � . . . � Qn

Problem: How can you represent the partial disambiguation (i.e. two remaining readings) of

Each child told two teachers a story. It was Alice in Wonderland.

; { ∃ � ∀ � 2 , ∃ � 2 � ∀ }
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II. Expressive Power

Cooper Storage as an Approach to Underspecification

I Answer: You can’t.

I According to the observation, there are only representations for sets of logical forms that end

in a common sequence of scopal elements.

I Hence there is no such structure for

{ ∃ � ∀ � 2 , ∃ � 2 � ∀ }

I In general, one cannot express a scope constraint of the form

Q has widest scope

I Cooper Storage is expressively incomplete

I What about the other approaches?
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II. Expressive Power

Example 1 – an isolated sentence

I Example of a sentence with an embedded DP; from (Park, 1995; Willis & Manandhar, 1999):

Two representatives of three companies saw most samples.

I According to (Park, 1995), this sentence has only four readings:

two(x, three(y, comp
′
(y), rep

′
(x) ∧ of

′
(x, y)),most(z, samp

′
(z), saw

′
(x, z)))

three(y, comp
′
(y), two(x, rep

′
(x) ∧ of

′
(x, y),most(z, samp

′
(z), saw

′
(x, z))))

most(z, samp
′
(z), two(x, three(y, comp

′
(y), rep

′
(x) ∧ of

′
(x, y)), saw

′
(x, z)))

most(z, samp
′
(z), three(y, comp

′
(y), two(x, rep

′
(x) ∧ of

′
(x, y)), saw

′
(x, z)))

I In particular, the sentence does not have this reading:

three(y, comp
′
(y),most(z, samp

′
(z), two(x, rep

′
(x) ∧ of

′
(x, y), saw

′
(x, z))))

I most samples does not ’intercalate’ two representatives and three companies, as (Park,

1995) puts it.
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II. Expressive Power

Example 1 – an isolated sentence

I More schematically, the set of readings (call it P ) that needs to be represented is

two rep(three comp(of),most samp(saw)) three comp(two rep(of,most samp(saw)))

most samp(two rep(three comp(of), saw)) most samp(three comp(two rep(of, saw)))

or even (f =̂ two rep; g =̂ three comp; h =̂ most samp; x =̂ of; y =̂ saw)

f(g(x), h(y)) g(f(x, h(y)) h(f(g(x), y)) h(g(f(x, y)))

I Assumption: there is an underspecified representation u of Hole Semantics for the set P

I u must contain the part information

X1 :f(X2, X3) X4 :g(X5) X6 :h(X7) X8 :x X9 :y

I Take a closer look at the form of the representation u
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II. Expressive Power

Example 1 – an isolated sentence

I First, in Hole Semantics it might be the case, that some label/argument variables of those

parts are shared (i.e. that they are identical).

I For instance, if X5 = X6 in those parts, this would specify that h has to be the daughter of g
in every solution of the representation u.

This is not the case in P (see g(f(x, h(y)))) ⇒ X5 and X6 are distinct variables in u

I Inspection of P shows:

for no two functors f, g is it the case that f is the immediate daughter of g in every t ∈ P .

I Hence no sharing of variables occurs an the parts actually are as given

I Considering dominance constraints it holds that

if u contained the constraint X2 /
∗ X4 (for instance), then f would have to dominate g in

every solution of u.

This is not the case in P (see g(f(x, h(y)))) ⇒ u does not contain X2 /
∗ X4
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II. Expressive Power

Example 1 – an isolated sentence

I In general, the dominance information DP common to the terms in P sets an upper bound to

the possible constraints Du of u, i.e. Du ⊆ DP .

I For P from above we have

DP =
˘

X2 /
∗ X8, X3 /

∗ X9, X5 /
∗ X8, X7 /

∗ X9

¯
f /∗ x f /∗ y g /∗ x h /∗ y

I displayed as a constraint graph:

X4 :g(X5) X1 :f(X2, X3) X6 :h(X7)

X8 :x X9 :y
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II. Expressive Power

Example 1 – an isolated sentence

I But note that the unavailable fifth reading g(h(f(x, y))) also satisfies the constraints DP

I Hence g(h(f(x, y))) would also be a solution of u, contrary to our assumption.

⇒ there is no Hole Semantics representation for P

I We get the same result for MRS which also fails to represent this pattern of ambiguity

I The problem is that the common dominance information alone is not sufficient to rule out the

unavailable reading
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II. Expressive Power

Example 1 – an isolated sentence

I Note however, that there is a representation in the NDC approach making use of the inequality

X5 6= X6

stating that h (here: three companies) may not be the daughter of g (here: most samples)

ψ := X1 :f(X2, X3) ∧X4 :g(X5) ∧X6 :h(X7) ∧X8 :x ∧X9 :y

∧ X2 /
∗
X8 ∧X3 /

∗
X9 ∧X5 /

∗
X8 ∧X7 /

∗
X9

∧ X5 6= X6

∧ (additional inequalities needed by a well-formed NDC)

I These considerations straightforwardly lead to a comparison of the approaches as a side effect:

NDCs with inequalities are strictly more expressive than Hole Semantics (see Ebert, 2005;

proves Theorem of (Koller et. al., 2003) wrong),

(without inequalities they are equivalent to Hole Semantics; cf. Koller, 2004)
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II. Expressive Power

Example 2 – a partially disambiguated sentence

I Take our previous example

Each child told two teachers a story.

I Suppose this examples is disambiguated in a way that rules out the (∃2∀) reading.

I For instance, it may be followed by an unambiguous negated paraphrase of this reading:

. . . But it is not the case that there was one story und two teachers, such that each child
told this story to these teachers.

I Hence the initially six-fold ambiguous sentence is partially disambiguated, leaving only a

five-fold ambiguity

(∀2∃) (∀∃2) (2∀∃) (2∃∀) (∃∀2)

I How would a representation for this set of readings look like?
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II. Expressive Power

Example 2 – a partially disambiguated sentence

I Let us look at the more abstract set of terms (call it Q)

f(g(h(x))) f(h(g(x))) g(f(h(x))) g(h(f(x))) h(f(g(x)))

I The parts do again have no shared variables

X1 :f(X2) X3 :g(X4) X5 :h(X6) X7 :x

I Again the common dominance information in Q is vacuous w.r.t. all six possible readings

I but here also the common inequality information for NDCs is vacuous

I If an alleged NDC representation ϕ contained the constraint X2 6= X3 (for instance), then in

no solution f could immediately dominate g.

I This is not the case in Q (see f(g(h(x)))) ⇒ ϕ does not contain X2 6= X3

Pragmatik Kolloquium, Bielefeld 2006 26



II. Expressive Power

Example 2 – a partially disambiguated sentence

Xi /
∗ Xj in ϕ ⇒ functor of Xi dominates functor of Xj in each solution

Xi 6= Xj in ϕ ⇒ functor of Xi immediately dominates functor of Xj in no solution

immediate dominance relation dominance relation

fghx fhgx hgfx ghfx gfhx fghx fhgx hgfx ghfx gfhx

fg fg fg
fh fh fh fh fh

fx fx fx fx fx fx fx
gf gf gf gf gf

gh gh gh gh gh
gx gx gx gx gx gx

hf hf hf
hg hg hg hg

hx hx hx hx hx hx hx
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II. Expressive Power

Example 2 – a partially disambiguated sentence

I Hence the dominance constraints that could possibly occur in ϕ are

DQ =
˘

X2 /
∗ X7, X4 /

∗ X7, X6 /
∗ X7

¯
f /∗ x g /∗ x h /∗ x

I Furthermore ϕ does not contain any non-vacuous inequality constraints

I Again, the unwanted reading h(g(f(x))) also fulfills those constraints and cannot be excluded

⇒ there is no NDC that represents Q

I The same is true for Hole Semantics and MRS
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II. Expressive Power

Expressive Completeness

I Conclusion:

All of the investigated approaches fail to represent some (fairly simple) patterns of ambiguity

For instance, all fail to represent the ambiguity that arises if three scopal elements interact

freely and context/world knowledge excludes one of the resulting readings (cf. Example 2)

I So what are the patterns of ambiguity that actually need to be represented?

I König & Reyle (1999):

if you deal with n distinct scopal elements, there are n! distinct permutations...

∀, ∃, 2 ; (∀∃2) (∀2∃) (∃∀2) (∃2∀) (2∀∃) (2∃∀)

I ...and there are 2n! distinct subsets of readings...

{(∀∃2)} {(∀∃2), (2∃∀)} {(∃∀2), (∃2∀), (2∃∀), (2∀∃)} . . .

I ... and so a formalism is expressively complete if it provides an underspecified representation for

each of these subsets
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II. Expressive Power

Expressive Completeness

I So is natural language really that unrestricted w.r.t. scopal ambiguities?

I In isolated sentences scopal ambiguities are clearly limited (and to some extent still a mystery...)

I For instance, it may well be that there is no isolated sentence with five scopal elements

Q1, . . . , Q5 that is two-fold ambiguous between the readings (call this set R)

Q1Q2Q3Q4Q5 Q5Q4Q3Q2Q1

I But it is reasonable to assume that this ’weird’ set of readings R can be produced by partial

disambiguations due to context/world knowledge

I In other words: the claim, that R is no linguistically relevant set of readings comes down to

the claim that

1. there is no isolated sentence that is ambiguous between the readings in R, and

2. there is no way context/world knowledge could evolve such that partial disambiguation leads

to the ambiguity in R

I In particular the latter point seems to be an unreasonable claim
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II. Expressive Power

Example 3 – Negative Concord

I Even this unrestricted view of König & Reyle may not be general enough to capture all

occurring ambiguities

I French data from (Corblin, 1996):

Personne
nobody

n’aime
NEG love

personne
nobody

I This sentence is two-fold ambiguous:

1. Negative Concord Reading:

¬∃x∃y(love′(x, y)) ≡ ∀x∀y(¬love′(x, y))

’Nobody loves nobody’ (there is no love in the world)

2. Double Negation Reading:

¬∃x¬∃y(love′(x, y)) ≡ ∀x∃y(love′(x, y))

’Nobody is such that he loves nobody’ (everybody loves somebody)

I The common set of parts must provide two negations for the double negation reading but in

the negative concord reading these must be identified
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II. Expressive Power

Expressive Completeness

I Let us ignore cases like Example 3 for the moment and adopt König & Reyle’s (1999)

reasonable idea of expressive completeness

I Observation:

Hole Semantics, NDCs, and MRS are expressively incomplete

as each approach fails to provide a representation for the pattern of ambiguity

f(g(h(x))) f(h(g(x))) g(f(h(x))) g(h(f(x))) h(f(g(x)))

an instance of which were the readings of the partially disambiguated Example 2.

I Another example which Hole Semantics and MRS cannot represent is

f(h(g(x))) g(h(f(x))) (h takes intermediate scope)

I Obviously, those patterns are independent of the concrete scopal elements
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II. Expressive Power

A Comparison

I As a side effect, we get the following results concerning a comparison of the approaches with

respect to their expressive power (see also Koller, 2004; Niehren & Thater, 2003; Player, 2004

for related research).

MRS NDC

(with =qeq) (with 6=)

Hole NDC

Semantics (without 6=)

≡

I Question:

What would an expressively complete formalism look like?
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III. Complexity Issues
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III. Complexity Issues

Complexity Considerations in the Literature

I So far, the work on complexity of underspecified representation has focussed on satisfiability:

Given an underspecified representation, does it actually represent anything?

I For instance, the satisfiability of (non-normal) dominance constraints is NP-complete (Koller

et. al., 1998)

I Hence Koller et. al. (2000) devise the restricted fragment of normal dominance constraints,

which can be checked for satisfiability in polynomial time.

I With the same motivation, Willis (2000) has designed a polynomially satisfiable formalism

I Although these questions are interesting from a practical point of view in particular, they do

not contribute to a solution of the combinatorial explosion problem.
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III. Complexity Issues

A näıve proposal

I Extremely Näıve Proposal:

Represent each ambiguity by the set of logical forms

I E.g. Example 1: Two representatives of three companies saw most samples. ;

{ two(x, three(y, comp
′
(y), rep

′
(x) ∧ of

′
(x, y)),most(z, samp

′
(z), saw

′
(x, z))),

three(y, comp
′
(y), two(x, rep

′
(x) ∧ of

′
(x, y),most(z, samp

′
(z), saw

′
(x, z)))),

most(z, samp
′
(z), two(x, three(y, comp

′
(y), rep

′
(x) ∧ of

′
(x, y)), saw

′
(x, z))),

most(z, samp
′
(z), three(y, comp

′
(y), two(x, rep

′
(x) ∧ of

′
(x, y)), saw

′
(x, z))) }

I This ’approach’ is expressively complete!

I Satisfiability can be checked in constant time!

I The enumeration of the encoded readings can be performed in linear time!
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III. Complexity Issues

A less näıve proposal?

I Another (less näıve?) proposal:

Use disjunction in addition to conjunction in the interpretation of the constraints

I This approach also is expressively complete, as one can disjoin fully specified conjunctive

representations of single terms

I For instance, the following constraint represents {fghx, fhgx, hgfx, ghfx, gfhx} (Example 2):

ϕ =
`

(X :f(Y ) ∧ Y :g(Z) ∧ Z :h(V ) ∧ V :x)

∨ (X :f(Z) ∧ Y :g(V ) ∧ Z :h(Y ) ∧ V :x)

∨ (X :f(V ) ∧ Y :g(X) ∧ Z :h(Y ) ∧ V :x)

∨ (X :f(V ) ∧ Y :g(Z) ∧ Z :h(X) ∧ V :x)

∨ (X :f(Z) ∧ Y :g(X) ∧ Z :h(V ) ∧ V :x)
´
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III. Complexity Issues

A less näıve proposal?

I Obviously, this representation is not any better than the näıve enumeration of all readings

I With disjunction around, one starts to ’enumerate’ information instead of ’underspecifying’ it

I The main point of these ridiculous examples:

The construction of the ’underspecified representation’ has to do all the work

Whereas the Combinatorial Explosion Problem is a ’feature’ of the Montagovian framework
itself, it lurks in the construction process in the Underspecification framework.

Hence the Underspecification framework does not solve the combinatorial explosion problem

per se, but only if the involved processes – in particular the construction process – are efficient

(cf. Dörre, 1997).

I The compactness (i.e. ’small size w.r.t. the number of scopal elements’) of the representations

is a necessary requirement for efficient construction
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III. Complexity Issues

Compact Representations

I An underspecified representation u represents a set of readings built out of some scopal

elements Q1, . . . , Qn

I We can hence define an approach to produce compact representations, if the size of its

representations is polynomial (≈ ’feasible’) in the number n of underlying scopal elements.

I Formally:

Suppose the underspecified representations are drawn from some formal languageU ⊆ (A∪V)∗

over some finite alphabet of symbols A and some infinite set of variables V

I Then let

λ(n) := max
˘
|u| | u ∈ U represents readings over n scopal elements

¯
be the maximal size of a representation that is needed by formalism U to represent a set of

readings over n scopal elements
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III. Complexity Issues

Compact Representations

I Definition:

U is compact :⇐⇒ λ(n) ∈ O(n
c
) for some c ∈ N

I With this definition:

approach not compact ⇒ construction not feasible ⇒ combinatorial explosion

I For instance, this definition classifies the näıve proposal as not compact as the representations

are of factorial size in the worst case
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III. Complexity Issues

Expressive Completeness ↔ Compactness

I Take a closer look at the worst case growth rates:

No. scopal elements No. readings No. patterns of ambiguity

n n! 2n!

1 1 2

2 2 4

3 6 64

4 24 16777216

5 120 1, 329 · 1036

6 720 5, 516 · 10216

7 5040 1, 553 · 101517

8 40320 3, 384 · 1012137

I e.g. n = 5 scopal elements may generate n! = 120 readings...

I ...and those may form 1, 329 · 1036 sets/patterns of ambiguity/partial disambiguations

Pragmatik Kolloquium, Bielefeld 2006 41



III. Complexity Issues

Expressive Completeness ↔ Compactness

I Hence an expressively complete formalism must provide 1, 329 · 1036 representations...

I ...but each of those must be shorter than listing all n! = 120 readings in order to be compact

(i.e. do better than the näıve proposal and avoid combinatorial explosion)

I Problem:

there are not enough ’polynomially short’ representations, so you necessarily have to use some

longer ones.

I For a given length l, an upper bound on the number of distinct representations of size l is

(|A|+ l)
l

(for each of the l symbols either a symbol from A, or one of maximally l variables)

I Hence, up to a given length m, the formalism U provides no more than ... representations

mX
i=1

(|A|+ i)
i ≤ m · (|A|+m)

m
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III. Complexity Issues

Expressive Completeness ↔ Compactness

I Now recall that U must provide 2n! representations in order to expressively complete (for any

given n)

I Suppose we can use every representation up to length λ(n) and that each such representation

represents a different set from the 2n! we need

λ(n) · (|A|+ λ(n))
λ(n) ≥ 2

n!

I Then we get (lg = log2)

lg λ(n) + λ(n) · lg (|A|+ λ(n)) ≥ n!

I If U is compact this yields the following contradiction

c · lgn+ n
c · lg (|A|+ n

c
) ≥ n!

∈ O(n
c · lgn) ∈ O(n!)
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III. Complexity Issues

Expressive Completeness ↔ Compactness

I Hence, under the assumption that U is expressively complete, λ(n) must grow faster than

polynomial =⇒ U is not compact

I So we have:

An underspecified representations formalism cannot both

be expressively complete and compact.

(see Ebert, 2005 for further details)

I In other words:

Either the formalisms fails to represent some potential sets of readings or it is not feasible

(i.e. does not avoid the combinatorial explosion problem).
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IV. Conclusion
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IV. Conclusion

Conclusion

I Avoidance of combinatorial explosion is the most important motivation for using underspecifi-

cation

I Expressive completeness is a requirement for every linguistically adequate representation

formalism

I Unfortunately, it seems that you cannot have both at the same time

I Virtually all of the seminal approaches to underspecification have focussed on the first point and

striven for efficient procedures working on the representations (e.g. satisfaction/enumeration of

readings)

I Approaches focussing on the second have emerged only very recently
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IV. Conclusion

Conclusion

I Two examples:

• Underspecification in Property Theory with Curry Typing (PTCT; Fox & Lappin, 2005)

uses essentially first-order logic to express complex filter conditions on possible readings

• Lexical Resource Semantics (LRS; Richter & Sailer, 2004)

integrates an underspecification module as essential part of HPSGs using the Relational

Speciate Re-entrant Language (RSRL)

enables formulation of complex constraints and particularly allows for treatment of negative

concord phenomena (cf. Example 3) due to the possible unification of parts.

I Both approaches are expressively complete, but forget about the complexity...

I Morale: you have to know, which side you are on
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Thanks!
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