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Goodman’s puzzle

(1) If that match had been scratched, it would have lighted.

“When we say (1), we mean that conditions are such—i.e.
the match is well made, is dry enough, oxygen enough is
present, etc.—that “The match lights” can be inferred from
“The match is scratched.”
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Goodman’s puzzle

(1) If that match had been scratched, it would have lighted.

“When we say (1), we mean that conditions are such—i.e.
the match is well made, is dry enough, oxygen enough is
present, etc.—that “The match lights” can be inferred from
“The match is scratched.”

“Thus the connection we affirm may be regarded as joining
the consequent with the conjunction of the antecedent and
other statements that truly describe relevant conditions.”
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Goodman’s puzzle

(1) If that match had been scratched, it would have lighted.

Q: What sentences are to be taken in conjunction with the
antecedent as a basis for inferring the consequent?

A: True sentences with which the antecedent is cotenable.

A is cotenable with with S . . . if it is not the case
that S would not be true if A were true.

i.e., if A were true, S would (still) be true
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This talk

Two ingredients of a Goodmanian theory:

Premise semantics
for adding sentences to the antecedent
Causal networks
for choosing which sentences to add

One way to combine the two.
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Premise semantics

Adding sentences to the antecedent
Veltman (1976), Kratzer (1981, 1989)
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Models

ModelM = 〈W ,V〉, where

W is a non-empty set of possible worlds;
V maps propositional variables to subsets of W

Interpretation function ~·� maps sentences to {0, 1}:

~p�Mw = 1⇔ w ∈ V (p)

~ϕ ∧ ψ�Mw = 1⇔ ~ϕ�Mw = ~ψ�
M
w = 1

~¬ϕ�Mw = 1⇔ ~ϕ�Mw = 0
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Counterfactuals

Premise set: set of propositions

representing one way of adding true sentences to the
antecedent consistently
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Counterfactuals

Premise set: set of propositions

Premw(ϕ): set of premise sets

representing all relevant ways of adding truew sentences to
ϕ consistently
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Counterfactuals

Premise set: set of propositions

Premw(ϕ): set of premise sets

Would-counterfactual: �

ϕ� ψ is true at w if and only if every set in Premw(ϕ) has
a superset in Premw(ϕ) which entails ψ.

Might-counterfactual: �

ϕ� ψ is true at w if and only if there is a set in Premw(ϕ)
all of whose supersets in Premw (ϕ) are consistent with ψ.

Fact: ϕ� ψ iff ¬(ϕ� ¬ψ)
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Flavors of premise semantics

The same definitions of� and� give different results
depending on the premise sets in Premw(ϕ).

➽ The premise sets are the place to tweak the theory.

Invariably: For all X in Premw(ϕ),

ϕ is in X ;
X is consistent;
all propositions in X other than ϕ are true at w.

But not all true propositions are relevant.

A function f maps worlds to sets of propositions.
All X in Premw (ϕ) must be subsets of f (w).

Different versions, characterized by f :
n
�,

n
�: Naı̈ve premise semantics

p
�,

p
�: Partition semantics

l
�,

l
�: Lumping semantics
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Naı̈ve premise semantics

First try: All true propositions are relevant.

f (w): all propositions that are true at w.

Premn
w(ϕ): all consistent subsets of f (w)∪ {ϕ} containing ϕ.

Problem: This can’t be right.
If ϕ is false at w, then

ϕ
n
� ψ comes down to �(ϕ→ ψ).

(strict implication)

ϕ
n
� ψ comes down to ^(ϕ ∧ ψ)

(logically consistency)

More generally:

ϕ
n
� ψ⇔ (ϕ→ ψ) ∧ (¬ϕ→ �(ϕ→ ψ))

ϕ
n
� ψ⇔ (ϕ ∧ ψ) ∨ (¬ϕ ∧^(ϕ ∧ ψ))
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Second try: Not all true propositions are relevant.

Speakers have a more coarse-grained view of the facts.

f (w) subject only to the condition that it uniquely
identify {w}.

⋂

f (w) = {w}
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Partition semantics

Second try: Not all true propositions are relevant.

Speakers have a more coarse-grained view of the facts.

f (w) subject only to the condition that it uniquely
identify {w}.

Premp
w(ϕ): all consistent subsets of f (w) ∪ {ϕ} containing ϕ

(as before).
Questions:

Which propositions do/don’t belong in Premp
w(ϕ)?

Which piece of the logical machinery regulates membership
in Premp

w(ϕ)?

Kratzer (1989): Closure conditions on sets in Premp
w(ϕ)

Closure under logical consequence and lumping.
Doesn’t quite work as expected;
see Kanazawa, Kaufmann and Peters (2005).
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Interim summary

Premise semantics:

Closely related to Stalnaker/Lewis ordering semantics
(Lewis, 1981)

Dominant approach in linguistics

A framework, not a theory

Question: How to define premise sets

Next section: Some ideas from AI and psychology
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true sentences which

are cotenable with ϕ (Goodman)

would (still) be true if ϕ were true
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Counterfactual independence

Recall: ‘ϕ� ψ’ is true iff ψ follows from ϕ together with
true sentences which

➽ are counterfactually independent of ϕ (Goodman)

Hume: . . . [w]e may define a cause to be

an object, followed by another, and where all the objects
similar to the first are followed by objects similar to the
second.
Or in other words where, if the first object had not been, the
second never had existed.
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Counterfactual independence

Recall: ‘ϕ� ψ’ is true iff ψ follows from ϕ together with
true sentences which

➽ are counterfactually independent of ϕ (Goodman)

➽ are causally independent of ϕ (Hume)

Lewis: Counterfactual analysis of causality
(see also Collins, Hall and Paul, 2004)

Counterfactuals interpreted in terms of
overall comparative similarity between possible worlds
Counterfactuals provide evidence about causal relations
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Counterfactual independence

Recall: ‘ϕ� ψ’ is true iff ψ follows from ϕ together with
true sentences which

➽ are counterfactually independent of ϕ (Goodman)

➽ are causally independent of ϕ (Hume)

Lewis: Counterfactual analysis of causality
Why not take causality as basic?

(not that all counterfactuals assert causal relationships)
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Causal independence

Pearl (2000):

In the last decade, owing partly to advances in graph-
ical models, causality has undergone a major trans-
formation: from a concept shrouded in mystery into a
mathematical object with well-defined semantics and
well-founded logic . . . Put simply, causality has been
mathematized.
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Bayesian networks

Bayesian Network:

Directed Acyclic Graph (DAG) 〈U,E〉

U: set of random variables
E: relation over U whose transitive closure is asymmetric

Rain?

Wet?

Slippery?

Summer?

Sprinkler (on/off)

no Rain

X1

X3 X2

X4

X5
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Bayesian networks

Bayesian Network:

Directed Acyclic Graph (DAG) 〈U,E〉

Probability distribution over the values assignments

Notation: ‘P(x1, . . . , xn)’ for ‘P(X1 = x1, . . . ,Xn = xn)’

Rain?

Wet?

Slippery?

Summer?

Sprinkler (on/off)

no Rain

X1

X3 X2

X4

X5
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Bayesian networks

Markov Assumption: The probability of a variable is completely
determined by the value(s) of its parent(s) in the graph.

e.g., P(x5|x1, x2, x3, x4) = P(x5|x4)

Rain?

Wet?

Slippery?

Summer?

Sprinkler (on/off)

no Rain

X1

X3 X2

X4

X5
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Bayesian networks

Markov Assumption: Decomposability

P(x1, x2, x3, x4, x5)

= P(x1)P(x2|x1)P(x3|x1, x2)P(x4|x1, x2, x3)P(x5|x1, x2, x3, x4)

= P(x1)P(x2|x1)P(x3|x1)P(x4|x2, x3)P(x5|x4)

Rain?

Wet?

Slippery?

Summer?

Sprinkler (on/off)

no Rain

X1

X3 X2

X4

X5
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Bayesian networks

Practical advantages:

compact representation

learning from limited data

efficient inference

Rain?

Wet?

Slippery?

Summer?

Sprinkler (on/off)

no Rain

X1

X3 X2

X4

X5



Outline Goodman Premise semantics Causality Integration Conclusion

Bayesian Inference

Observing that the sprinkler is on:

Set X3 to ‘on’

Re-calibrate the probabilities of all other variables.

Affects the probabilities of the seasons

Sprinkler on Rain (yes/no)

Wet pavement (yes/no)

Slippery (yes/no)

Summer (yes/no)X1

X3 X2

X4

X5
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Causal networks

Causal Bayesian Network:

Bayesian Network under a special interpretation

All arrows indicate causal influence

Rain?

Wet?

Slippery?

Summer?

Sprinkler (on/off)

no Rain

X1

X3 X2

X4

X5
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Causal networks

Causal Bayesian Network:

Bayesian Network under a special interpretation

All arrows indicate causal influence

Two modes of inference: Observation and Intervention

Rain?

Wet?

Slippery?

Summer?

Sprinkler (on/off)

no Rain

X1

X3 X2

X4

X5
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Turning the sprinkler on

Intervention I: Manipulation

Manipulate the network structure: Cut all arrows into X3

Sprinkler on Rain (yes/no)

Wet pavement (yes/no)

Slippery (yes/no)

Summer (yes/no)X1

X3 X2

X4

X5
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Turning the sprinkler on

Intervention I: Manipulation

Manipulate the network structure: Cut all arrows into X3

Update as before (now on the modified network)

Only affects the descendants of X3

(provided that X4,X5 are not observed)

Sprinkler on Rain (yes/no)

Wet pavement (yes/no)

Slippery (yes/no)

Summer (yes/no)X1

X3 X2

X4

X5
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Turning the sprinkler on

Intervention II: Intervention variable

A special variable with values
{idle, do(X3 = on), do(X3 = off )

Wet?

Slippery?

Summer?

Sprinkler (on/off)

no Rain

Rain?

Intervention?
I X1

X3 X2

X4

X5
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Turning the sprinkler on

Intervention II: Intervention variable

A special variable with values
{idle, do(X3 = on), do(X3 = off )

idle: The value of X3 is observed

no intervention

Wet?

Slippery?

Summer?

Sprinkler (on/off)

no Rain

Rain?

X1

X3 X2

X4

X5

I
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Turning the sprinkler on

Intervention II: Intervention variable

A special variable with values
{idle, do(X3 = on), do(X3 = off )

idle: The value of X3 is observed
do(X3 = . . .): The value of X3 is manipulated

intervention

Wet?

Slippery?

Summer?

Sprinkler (on/off)

no Rain

Rain?

X1

X3 X2

X4

X5

I
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Turning the sprinkler on

Intervention (either way):

Prevents backtracking (abductive) inferences

Similar to Lewisian “miracles” (Lewis 1973, 1979)

Simple rule: All non-descendants of the manipulated
variable remain unaffected
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Observation vs. intervention

Two ways of asking ‘What if Xi = xi?’

Observation: Conditioning on ‘Xi = xi ’
[Non-descendants of Xi affected]

Intervention: Conditioning on ‘do(Xi = xi)’
[Non-descendants of Xi not affected]

Two hypotheses:

H1: Indicatives involve observation.

H2: Counterfactuals involve intervention.

Two problems:

Some indicative conditionals involve intervention.
(Kaufmann 2004, 2005b, 2006)

Not all counterfactual inference involves intervention.
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Sloman and Lagnado (2005), Exp. 2

CA B

(abstract) causal condition:

When A happens, it causes B most of the time.
When B happens, it causes C most of the time.
A happened.
C happened.
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Sloman and Lagnado (2005), Exp. 2

CA B

Intervention: “Someone intervened directly on B, preventing it
from happening. What is the probability that A/C would have
happened?”

Observation: “What is the probability that A/C would have
happened if we observed that B did not happen?”

Unspecified: “What is the probability that A/C would have
happened if B had not happened?”
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Sloman and Lagnado (2005), Exp. 2

CA B

Intervention: “Someone intervened directly on B, preventing it
from happening. What is the probability that A/C would have
happened?”

A: 3.9 C: 2.3

Observation: “What is the probability that A/C would have
happened if we observed that B did not happen?”

A: 2.7 C: 2.3

Unspecified: “What is the probability that A/C would have
happened if B had not happened?”

A: 3.2 C: 2.4

(Scale: 1=very low, 2=low, 3=medium, 4=high, 5=high)
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Sloman and Lagnado (2005), Exp. 5,6

A B

All rocket ships have two components, A and B. Component A
causes Component B to operate. In other words, if A, then B.
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Sloman and Lagnado (2005), Exp. 5,6

A B

Counterfactual: “Suppose Component B/A were not operating,
would Component A/B still operate?”

Explicit prevention: “Suppose Component B/A were prevented
from operating, would Component A/B still operate?”

Explicit prevention: “Suppose Component B/A were prevented
from moving, would Component A/B still be moving?”

Explicit observation: “Suppose Component B/A were observed
to not be moving, would Component A/B still be moving?
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Sloman and Lagnado (2005), Exp. 5,6

A B

Counterfactual: “Suppose Component B/A were not operating,
would Component A/B still operate?”

if not B, A: 68 if not A, B: 2.6

Explicit prevention: “Suppose Component B/A were prevented
from operating, would Component A/B still operate?”

if not B, A: 89 if not A, B: 5.3

Explicit prevention: “Suppose Component B/A were prevented
from moving, would Component A/B still be moving?”

if not B, A: 85 if not A, B: 19

Explicit observation: “Suppose Component B/A were observed
to not be moving, would Component A/B still be moving?

if not B, A: 22 if not A, B: 30
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Sloman and Lagnado (2005): Discussion

➽ No simple relationship between counterfactuals and
intervention.

“Representing intervention is not always as easy
as forcing a variable to some value and cutting
the variable off from its causes. Indeed, most of
the data reported here show some variability in
people’s responses. People are not generally
satisfied to simply implement a do operation.
People often want to know precisely how an
intervention is taking place.”
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empirically testable

mathematically elegant

computationally tractable

precise statement and testing of hypotheses about causal
inference
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Interim Summary

Causal networks:

empirically testable

mathematically elegant

computationally tractable

precise statement and testing of hypotheses about causal
inference

Question: What about a “causal premise semantics”?
And how is all this related to possible, worlds, anyway?
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Causal networks and possible worlds

Networks

Event

Worlds

Proposition

X = x x
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Causal networks and possible worlds

Networks

Event

Variable

Worlds

Proposition

Partition

X x x
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Causal networks and possible worlds

Networks

Event

Variable

Network of variables

Worlds

Proposition

Partition

Network of partitions

X

Y
x y

x x

x y x y

x y

X cuts across Y , but not vice versa.
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Counterfactual alternatives

x

y x y

x x

x y x y

x y

Suppose x and y are both true at world w.
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Counterfactual alternatives

x

y x y

x x

x y x y

x y

Only x and x y are relevant for the truth of counterfactuals.

y < f (w)

f (w) = {x, xy}
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Counterfactual alternatives

x

y x y

x x

x y x y

x y

If y were false, x would still be true.
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Counterfactual alternatives

x

Y x y

x x

x y x y

x y

If x were false, y might also be false.
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Downstream inference

Wet (yes/no)

Rain (yes/no)Sprinkler (on/off)

no rain
on

off

dry

wetwet

wet

rain

Sprinkler and Rain are independent.
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Downstream inference

Wet

Sprinkler on no Rain

no rain
on

off

wet wet

wet dry

rain

True propositions (at the world of evaluation)
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Downstream inference

Wet

Sprinkler off no Rain

on

off

no rain

wet wet

wet dry

rain

(3) a. If the sprinkler were off . . .
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Downstream inference

�����
�����
�����
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�����

�����
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�����
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Wet

Sprinkler off no Rain

on

off

no rain

wet wet

wet dry

rain

(3) a. ✓If the sprinkler were off, it would be dry.
b. ✗If the sprinkler were off, it would be raining.
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Goodman’s match

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Lights

Struck Oxygen

(3) a. ✓If the match had been struck, it would have lighted.
b. ✗If the match had been struck, there would have been

no oxygen.
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Whenever X → Y , f (w) contains Xw and XwYw — not Yw .

Counterfactual reasoning about causes involveses
“undoing” their effects; but not vice versa

➽ Intervention.
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Summary on downstream inference

Premise semantics and causality:

Causal structure affects the set f (w) of propositions
relevant for the truth of counterfactuals.

Whenever X → Y , f (w) contains Xw and XwYw — not Yw .

Counterfactual reasoning about causes involveses
“undoing” their effects; but not vice versa

➽ Intervention.

But what about non-intervention counterfactuals?
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Observation vs. intervention

Kratzer (1989):

King Ludwig of Bavaria likes to spend his weekends at
Leoni Castle. Whenever the Royal Bavarian flag is up
and the lights are on, the King is in the Castle. At the
moment, the lights are on, the flag is down, and the
King is away. Suppose now counterfactually that the
flag were up.

(4) a. If the flag were up, the King would be in the Castle.
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Observation vs. intervention

Let us change the scenario just a little bit . . . I say to
you: “Suppose I hoisted the flag. . . ” . . . Would my
hoisting the flag bring the King back into the Castle?
No. The counterfactual expressed by [4b] is false.

(4) a. ✓If the flag were up, the King would be in the Castle.
b. ✗If I hoisted the flag, the King would appear in the

Castle.
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Observation vs. intervention

Observation vs. intervention
expressed in the linguistic form of the antecedent
results in truth-conditional difference

(4) a. ✓If the flag were up, the King would be in the Castle.
b. ✗If I hoisted the flag, the King would appear in the

Castle.
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Goodman vs. Kratzer

Kratzer:
King Ludwig of Bavaria likes to spend his weekends
at Leoni Castle. Whenever the Royal Bavarian flag is
up and the lights are on, the King is in the Castle. At
the moment, the lights are on, the flag is down, and
the King is away. Suppose now counterfactually that
the flag were up. Well, then the King would be in the
Castle and the lights would still be on. But why wouldn’t
the lights be out and the King still be away?

Goodman’s match:
Whenever a match is struck and oxygen is present, the
match lights.
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Goodman vs. Kratzer

Lights?

Struck? Oxygen?

Lights?

King?

Flag?

Match: Striking affects lighting

King: Flag may or may not affect the king

➽ Observation vs. intervention again
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Observation vs. intervention

no interv

wet wet

wet

wetwet

dry

rain rainno rain

on

off

onoff

interv

Intervention? Rain?

Sprinkler? Wet?

Without intervention, the status of the sprinkler is
determined by the weather.

With intervention, they are independent.
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Observation vs. intervention

no interv

wet wet

wet

wetwet

dry

rain rainno rain

on

off

onoff

interv

Intervention? Rain?

Sprinkler? Wet?

True propositions (at the world of evaluation).
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Observation vs. intervention

no interv

wet wet

wet

wetwet

dry

rain rainno rain

on

off

onoff

interv

no intervention Rain?

Sprinkler on Wet?

Without intervention:

(5) a. If the sprinkler were off. . .
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dry

rain rainno rain

on
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no intervention Rain?

Sprinkler off Wet?

Without intervention:

(5) a. If the sprinkler were off, it would be raining.
b. If the sprinkler were off, it would be wet.
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wet wet
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rain rainno rain
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Intervention? Rain?

Sprinkler? Wet?

With intervention:

(5) a. If the sprinkler were turned off. . .
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Observation vs. intervention
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no interv

wet wet

wet

wetwet

dry

rain rainno rain

on

off

onoff

interv

Intervention? Rain?

Sprinkler? Wet?

With intervention:

(5) a. ✓If the sprinkler were turned off, it would be dry.
b. ✗If the sprinkler were turned off, it would be wet.
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The two antecedents license different inferences about
non-effects
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Semantic agenda

(6) a. If I turned the sprinkler off . . .
b. If the sprinker were off . . .

The two antecedents license different inferences about
non-effects

How the difference between intervention and observation
expressed linguistically?

Aspectual properties? Thematic roles? Dowty (1979, 1981)
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Semantic agenda

(6) a. If I turned the sprinkler off . . .
b. If the sprinker were off . . .

The two antecedents license different inferences about
non-effects

How the difference between intervention and observation
expressed linguistically?

What should a model-theoretic analysis look like?

Intertia worlds? Stereotypical ordering sources?
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Conclusion

Premise semantics: A useful general-purpose framework
(not a theory itself)

Causal networks: Elegant, well-understood, empirically
testable
(but simplistic claims about counterfactual inference)

Linguistic questions still largely unexplored

➽ Lots of work ahead.
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The End.



Outline Goodman Premise semantics Causality Integration Conclusion

Elements of causal premise semantics

How to interpret ϕ� ψ at world w:

〈U,→〉: Causal network



Outline Goodman Premise semantics Causality Integration Conclusion

Elements of causal premise semantics

How to interpret ϕ� ψ at world w:

〈U,→〉: Causal network

։: Transitive closure of→



Outline Goodman Premise semantics Causality Integration Conclusion
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։: Transitive closure of→

[Xw]: Proposition that variable X has value Xw
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Outline Goodman Premise semantics Causality Integration Conclusion

Elements of causal premise semantics

How to interpret ϕ� ψ at world w:

〈U,→〉: Causal network

։: Transitive closure of→

[Xw]: Proposition that variable X has value Xw

f (w): Set of relevant propositions
restricted by non-descendants

For each variable X , f (w) contains the proposition that

X has value Xw and
X ’s non-descendants Y ,Y ′, . . . have values Yw ,Y ′w , . . .

f (w) =
{

[Xw ] ∩ [Yw ] ∩ [Y ′w ] ∩ . . . |X g Y i ,X ∈ U
}
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Elements of causal premise semantics

How to interpret ϕ� ψ at world w:

〈U,→〉: Causal network

։: Transitive closure of→

[Xw]: Proposition that variable X has value Xw

f (w): Set of relevant propositions
restricted by non-descendants

Premc
w(ϕ): all consistent subsets of f (w) ∪ {ϕ} containing ϕ

and closed under logical consequence (relative to f (w))

For all X ∈ Premc
w (ϕ), p ∈ f (w):

If p logically follows from X ∩ f (w), then p ∈ X
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Suppose �(ϕ→ ψ) is false.

Then there is a world w ′ at which ϕ is
true and ψ is false.
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(strict implication).

In particular, if �(ϕ→ ψ) is false, then so is ϕ
n
� ψ.

w′

w

ϕ

ψ

{w ,w ′} is a proposition true at w
X = {ϕ, {w ,w ′}} is a premise set

consistent;
contains ϕ;
all propositions except ϕ true at w
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If ϕ is false at w, then ϕ
n
� ψ comes down to �(ϕ→ ψ)

(strict implication).

In particular, if �(ϕ→ ψ) is false, then so is ϕ
n
� ψ.

w′

w

ϕ

ψ

{w ,w ′} is a proposition true at w

X = {ϕ, {w ,w ′}} is a premise set

X and all its supersets entail ¬ψ

Hence ϕ
n
� ψ is false

Back


	Outline
	Goodman
	Premise semantics
	Causality
	Integration
	Conclusion

