106 5. Omne- and two-sample tests

> t.test (pre, post) #WRONG!

Welch Two Sample t-test

~q

T\
data: pre and post
t = 2.6242, df = 19.92, p-value = 0.01629
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

270.5633 2370.3458
sample estimates:
mean of x mean of y

6753.636 5433.182

The number symbol (or “hash”) # introduces a comment in R. The rest of
the line is skipped.

It is seen that t has become considerably smaller, although still significant
at the 5% level. The confidence interval has become almost four times
wider than in the correct paired analysis. Both illustrate the loss of ef-
ficiency caused by not using the information that the “pre” and “post”
measurements are from the same person. Alternatively, you could say that
it demonstrates the gain in efficiency obtained by planning the experi-
ment with two measurements on the same person, rather than having two
independent groups of pre- and postmenstrual women.

5.7 The matched—pairs Wilcoxon test

The paired Wilcoxon test is the same as a one-sample Wilcoxon signed-
rank test on the differences. The call is completely analogous to t . test:

> wilcox.test(pre, post, paired=T)
Wilcoxon signed rank test with continuity correction

data: pre and post
V = 66, p-value = 0.00384
alternative hypothesis: true location shift is not equal to 0

Warning message:
In wilcox.test.default(pre, post, paired = T)
cannot compute exact p-value with ties

The result does not show any material difference from that of the f test.
The p-value is not quite so extreme, which is not too surprising since the
Wilcoxon rank sum cannot get any larger than it does when all differences
have the same sign, whereas the f statistic can become arbitrarily extreme.
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Again, we have trotible with tied data invalidating the exact p calcula-
tions. This time it is the two identical differences of —1540.

In the present case it is actually very easy to Calcu'la‘te th.e ex‘act p~va}[wlue
for the Wilcoxon test. It is the probability 101f 11 positive differences + ﬂ1e
probability of 11 negative ones, 2 x '(1/ 2)* = 1/1024 = 0.00098, so the
approximate p-value is almost four times too large.

5.8 Exercises

5.1 Do the values of the react data set (notice that this is a single vector,
not a data frame) look reasonably normally distributed? Does the mean
differ significantly from zero according to a f test?

5.2 In the data set vitcap, use a f test to compare the vita‘l capacity for
the two groups. Calculate a 99% confidence interval for the difference. The
result of this comparison may be misleading. Why?

5.3 Perform the analyses of the react and vitcap data using nonpara-
metric techniques.

5.4 Perform graphical checks of the assumptions for a paired f test in the
intake data set.

5.5 The function shapiro.test computes a test of normality based on
the degree of linearity of the Q-Q plot. Apply it to the react data. Does
it help to remove the outliers?

5.6 The crossover trial in ashina can be analyzeq for a drug effect 11.1
a simple way (how?) if you ignore a potentifnl.penod. effect. Ho.wcive.l,
you can do better. Hint: Consider the intra-indwld‘ual differences; ].f.t 131(3
were only a period effect present, how Shquld the differences beh'ave {11 } 1§
two groups? Compare the results of the simple method and the improve
method.

5.7 Perform 10 one-sample f tests on simulated normaHy‘. distribtlj[ed
data sets of 25 observations each. Repeat the experimen‘g, bL‘l’E m‘stead sim-
ulate samples from a different distribution{' try thg t d%strlbutl.og \jvuh 2
degrees of freedom and the exponential d1st1:1but10n (in the latter cglsg,
test for the mean being equal to 1). Can you fm'd a way to automate this
so that you can have a larger number of replications?




