1 Ellipsis

- (1) Dan likes Golf, and George does, too.
 - syntactic rule: $\|[v_P \text{ does}]\| = \lambda x \lambda s. P(s,x)$ (P some free property variable
 - identify parallel elements: Dan / George
 - mark *primary occurrence* of parallel element in semantic representation of antecedent clause

$$\lambda s.$$
LIKE' $(s, \underline{D}', GOLF')$

• compositional interpretation

-
$$\lambda s.$$
LIKE' $(s, \underline{D'}, GOLF')$
- $\lambda s. P(s, G')$

• Parallelism constraint

$$\lambda s.$$
LIKE' $(s, \underline{D'}, GOLF') = \phi(D')$
 $\lambda s. P(s, G') = \phi(B')$

• solve equation:

$$\begin{array}{ccc} \phi & \mapsto & \lambda x \lambda s. \text{LIKE'}(s, \underline{\text{D'}}, \text{GOLF'}) \\ \phi & \mapsto & \lambda x \lambda s. \text{LIKE'}(s, x, \text{GOLF'}) \end{array}$$

• in the correct solution, the primary occurrence must not occur

$$\phi \mapsto \lambda x \lambda s.$$
LIKE' $(s, x, GOLF')$

• compute pragmatic interpretation of ellipsis clause

$$\phi(B') = \lambda s.LIKE'(s, B', GOLF')$$

• ellipsis resolution:

$$P = \text{LIKE'}(\text{GOLF'})$$

- (2) Dan likes his wife, and George does, too.
 - $\|\operatorname{his}_i\| = \lambda P.\operatorname{of}'(x_i, P)$
 - compositional interpretation:
 - Dan likes his₁ wife. $\rightsquigarrow \lambda s. LIKE'(s, \underline{D'}, OF'(x_1, WIFE'))$
 - George does (too). $\rightsquigarrow \lambda s.P(s, G')$
 - contextual constraint: $x_1 = D$

• replace all contextually constraint variables by constants:

Dan likes his wife.
$$\rightsquigarrow \lambda s. LIKE'(s, \underline{D'}, OF'(D', WIFE'))$$

• Parallelism:

$$\lambda s.$$
LIKE' $(s, \underline{D}', OF'(D', WIFE')) = \phi(D')$
 $\lambda s. P(s, G') = \phi(G')$

• solve equation:

$$\phi_1 \mapsto \lambda x \lambda s. \text{LIKE'}(s, x, \text{OF'}(D', \text{WIFE'}))$$

 $\phi_2 \mapsto \lambda x \lambda s. \text{LIKE'}(s, x, \text{OF'}(x, \text{WIFE'}))$

• interpretations of elliptical clause

$$\phi_1(G') = \lambda s.\text{LIKE'}(s, G', OF'(D', WIFE'))$$

 $\phi_2(G') = \lambda s.\text{LIKE'}(s, G', OF'(G', WIFE'))$

ullet ellipsis resolution:

$$P_1 = \text{LIKE'}(\text{OF'}(\text{D'}, \text{WIFE'}))$$
 (1)

$$P_2 = \text{LIKE'}(\text{OF'}(G', \text{WIFE'}))$$
 (2)

- (3) John's mother adores him, and Bill's mother does, too.
 - antecedent clause: λs .ADORE' $(s, OF'(\underline{J'}, MOTHER'), J')$
 - ellipsis clause: $\lambda s.P(s, OF'(B', MOTHER'))$
 - Parallelism constraints:

$$\lambda s. \text{Adore'}(s, \underline{\text{Of'}(\underline{\text{J'}}, \text{MOTHER'})}, \underline{\text{J'}}) = \phi(\underline{\text{J'}}, \text{Of'}(\underline{\text{J'}}, \text{MOTHER'}))$$

 $\lambda s. P(s, \underline{\text{Of'}(B', \text{MOTHER'})}) = \phi(\underline{\text{B'}}, \underline{\text{Of'}(B', \text{MOTHER'})})$

• solutions:

$$\phi_1 \mapsto \lambda y \lambda x \lambda x$$
. ADORE' (s, y, y')
 $\phi_2 \mapsto \lambda y \lambda x \lambda x$. ADORE' (s, y, x)

• interpretation of elliptical clause

$$\phi_1(B', OF'(B', MOTHER')) = \lambda s.ADORE'(s, OF'(B', MOTHER'), J')$$

 $\phi_1(B', OF'(B', MOTHER')) = \lambda s.ADORE'(s, OF'(B', MOTHER'), B')$

• ellipsis resolution:

$$P_1$$
 = ADORE'(J')
 P_2 = ADORE'(B')

- (4) An U follows each X, and a Y does, too.
 - Compositional interpretation:

$$\lambda s. \forall x (X(s,x) \to \exists y (U(s,y) \land \text{Follow'}(s,x,y)))$$

$$\lambda s. \exists y (Y(s,y) \land P(s,y))$$

• Parallelism:

$$\lambda s. \forall x (X(s,x) \to \exists y (U(s,y) \land \text{Follow'}(s,x,y))) = \phi(\lambda Q \lambda s. \exists y (U(s,y)))$$
$$\lambda s. \exists y (Y(s,y) \land P(s,y)) = \phi(\lambda Q \lambda s. \exists y (Y(s,y)))$$

• Solution:

$$\phi = \lambda T \lambda s. \forall x (X(s, x) \to T(\lambda z \lambda s. \text{Follow}'(s, x, z)))$$

• elliptical clause:

$$\phi(\lambda Q\lambda s.\exists y(Y(s,y))) = \lambda s. \forall x(X(s,x) \to \exists y(Y(s,y) \land \texttt{FOLLOW'}(s,x,y)))$$

• ellipsis resolution:

$$P = \phi$$

ACD

(5) John read every book₁ that Paul did.

Prohibition of non-vacuous binding: Every λx_i that corresponds to a movement operation must bind at least one variable.