
Semantics 1

April 26, 2012

Gerhard Jäger

(April 26, 2012) Semantics 1 Gerhard Jäger 1 / 28

Sentence semantics

Explanatory goal

truth conditions of declarative sentences

meaning relations between declarative sentences

compositional computation of sentence meanings

(April 26, 2012) Semantics 1 Gerhard Jäger 2 / 28

Sentence semantics

Truth conditions

Wittgenstein (1922; Tractatus logico philosophicus):
Einen Satz verstehen, heißt, wissen, was der Fall ist, wenn er wahr ist.
(Man kann ihn also verstehen, ohne zu wissen, ob er wahr ist.)

(April 26, 2012) Semantics 1 Gerhard Jäger 3 / 28

Sentence semantics

Sense relations

Entailment (If A is true, B must also be true.)

Contradiction (A and B cannot be true at the same time.)

Synonymy (A and B are true under exactly the same conditions.)

(In-)Consistency (A can (not) be true.)

Tautology (A is always true.)

(April 26, 2012) Semantics 1 Gerhard Jäger 4 / 28

Sentence semantics

Compositionality

The meaning of a complex expression is completely determined by the
meanings of its parts and the way they are combined.

(April 26, 2012) Semantics 1 Gerhard Jäger 5 / 28

Set theory and semantics

Set theory and word meanings

simplifying assumption for the purposes of sentence semantics:
meaning of a predicate is identified with the set of objects to which
the predicate applies

1 ‖horse‖ = {x|x is a horse}
2 ‖red‖ = {x|x is red}
3 ‖speaks‖ = {x|x speaks}

Hyperonymy ≈ subset relation

A is a hyperonym of B iff ‖B‖ ⊆ ‖A‖

z.B. ‖horse‖ ⊆ ‖animal‖

(April 26, 2012) Semantics 1 Gerhard Jäger 6 / 28

Set theory and semantics

Boolean operators

combination of predicates via and, or, and not can be modeled via set
theoretic operations

‖round and red‖ = ‖round‖ ∩ ‖red‖
‖round or red‖ = ‖round‖ ∪ ‖red‖
‖not red‖ = ‖red‖

generally:

‖α and β‖ = ‖α‖ ∩ ‖β‖
‖α or β‖ = ‖α‖ ∪ ‖β‖
‖not α‖ = ‖α‖

(April 26, 2012) Semantics 1 Gerhard Jäger 7 / 28

Set theory and semantics

Boolsche Operatoren

set theoretic laws predict semantic equivalences (synonymies):

red and round ⇔ round and red (commutativity)
red or round ⇔ round oder red (commutativity)
red and [round and soft] ⇔ [red and round] and soft (associativity)
red or [round or soft] ⇔ [red oder round] oder soft (associativity)
not [red and round] ⇔ [nicht red] and [nicht round] (de Morgan)
...

(April 26, 2012) Semantics 1 Gerhard Jäger 8 / 28

Set theory and semantics

Set theory and sentence semantics

truth condition of a sentence are situation dependent:
The blackboard is clean. may be true or false, dependening on which
blackborad in which room a what time is being refered to

relativization of truth value to situation:
The blackboard is clean is true in the situation s iff (if and only if)
the object that is the blackboard in s is clean in s.

Meaning of the sentencs (= truth conditions):

‖The blackboard is clean‖ = {s|the blackboard in s is clean in s}

generelly:
‖φ‖ = {s|φ is true in s}

Sentence meanings are sets of situations!

(April 26, 2012) Semantics 1 Gerhard Jäger 9 / 28

Set theory and semantics

What are situations?

Situations can be spatially and locally bounded:

the blackboard is clean is true in s.

Situationens can be temporally bounded and spatially unbounded

The universe is expanding is true in s.

some situations are both spatially and temporally unbounded

2 + 2 = 4 is true in s.

(April 26, 2012) Semantics 1 Gerhard Jäger 10 / 28

Set theory and semantics

What are situations?

situations need not be real:
If Kennedy had not been shot, the Vietnam war would have ended in
1964 refers to a hypothetical situation where the sentence Kennedy
was shot is false in 1964.

Semantics deals with possible situations

many authors ignore the possible boundedness of situations and use
the term possible world (= maximal situations)

situations in natural language semantics play a role comparable to
models in propositional logic and predicate logic

(April 26, 2012) Semantics 1 Gerhard Jäger 11 / 28

Set theory and semantics

sense relations

φ entails ψ (notation: φ⇒ ψ) iff

‖φ‖ ⊆ ‖ψ‖

φ and ψ are contradictory

‖φ‖ ∩ ‖ψ‖ = ∅

φ and ψ are equivalent (synonymous) uff

‖φ‖ = ‖ψ‖

φ is inconsistent: ‖φ‖ = ∅
φ is consistent: ‖φ‖ 6= ∅
φ is a tautology: ‖φ‖ = S (S: set of all situations)

(April 26, 2012) Semantics 1 Gerhard Jäger 12 / 28

Set theory and semantics

Boolean operations on clauses

‖φ and ψ‖ = ‖φ‖ ∩ ‖ψ‖
‖φ or ψ‖ = ‖φ‖ ∪ ‖ψ‖
‖ It is not the case that φ‖ = ‖φ‖

This leads to general semantic laws, such as

φ and ψ ⇒ φ

because
‖φ and ψ‖ = ‖φ‖ ∩ ‖ψ‖ ⊆ ‖φ‖

(April 26, 2012) Semantics 1 Gerhard Jäger 13 / 28

Set theory and semantics

functions
various ways to describe functions:

‖mother‖ m : persons→ persons

x 7→ the mother of x

‖age‖ a : persons→ natural numbers

x 7→ the age of x, in years

‖successor‖ s : natural numbers→ natural numbers

x 7→ x+ 1

‖square‖ q : natural numbers→ natural numbers

x 7→ x2

(April 26, 2012) Semantics 1 Gerhard Jäger 14 / 28

Set theory and semantics

functions

algebraic notation:
f(x) = x2

set theoretic notation:

f = {〈x, x2〉|x ∈ N}

(April 26, 2012) Semantics 1 Gerhard Jäger 15 / 28

Set theory and semantics

λ-notation for functions

originates in logic and theoretica computer science

very convenient for the purposes of linguistic semantics
examples:

m : λx.(the mother of x)
a : λx.(the age of x, in years)
s : λx.(x+ 1)
q : λx.(x2)

such expressions are called lambda terms

general format:

λ variable.(description of the value of the variable)

variable is place holder for argument of the function

expression in parantheses gives recipe for computing the value of the
variable

formation of a lambda term from a description is called lambda
abstraction

(April 26, 2012) Semantics 1 Gerhard Jäger 16 / 28

Lambda notation

computing with lambda terms

[λx.(mother of x)](Isaac)
= mother of Isaac
= Sarah

[λx.x2](3)
= 32

= 9

General procedure:
1 delete the λ, the variable, and the period
2 replace all free occurrences of the variable inside the expression after

the period by the argument
3 if possible, simplify the resulting expression

This operation is called lambda conversion.

(April 26, 2012) Semantics 1 Gerhard Jäger 17 / 28

Lambda notation

lambda notation with domain specification

functions have a domain:

{〈x, x2〉|x ∈ N} 6= {〈x, x2〉|x ∈ R}

notation λx.x2 is therefore incomplete

complete notation: specification of the domain in the lambda prefix:

λx ∈ N.(x2)
λx ∈ R.(x2)

general format:
λ variable ∈ domain.(description of function value)

(April 26, 2012) Semantics 1 Gerhard Jäger 18 / 28

Lambda notation

lambda notation with domain specification

example

(λx ∈ R.(x2 + 3x+ 2))(−10) = 72
(λx ∈ N.(x2 + 3x+ 2))(−10) is undefined

domain specification and parantheses around value description are
frequently omitted when no ambiguity arises

(April 26, 2012) Semantics 1 Gerhard Jäger 19 / 28

Lambda notation

variable conventions

notation with explicit domain specification is cumbersome

simplification via variable conventions:
each variable name is, by convention, associated with a certain domain:

x, y, z, . . .: E (individuals/entities)
s, s′, s1, s2, . . .: S (situations)
P,Q, P ′, . . . : S × E (relations between situations and individuals)
R,S, . . .: S × E × E (relations between situations and pairs of
individuals)
p, q, . . .: POW (S) (sets of sets of individuals)

(April 26, 2012) Semantics 1 Gerhard Jäger 20 / 28

Lambda Notation

variable conventions

as long as not indicated differently, it is tacitly assumed that the value
of a variable falls into the corresponding domain

for example:
λx.φ abbreviates λx ∈ E.φ
λs′.φ abbreviates λs′ ∈ S.φ
λP.φ abbreviates λP ∈ S × E.φ
λp.φ abbreviates λp ∈ POW (S).φ
etc.

(April 26, 2012) Semantics 1 Gerhard Jäger 21 / 28

Lambda Notation

functions can take other functions as arguments

argument of a function may be complex:
argument is a set:

λX ∈ POW (N).(X ∩ {1, 2, 3})
(λX ∈ POW (N).(X ∩ {1, 2, 3}))({2, 3, 4}) = {2, 3, 4} ∩ {1, 2, 3} =
{2, 3}
(λX ∈ POW (N).(X ∩ {1, 2, 3}))({4, 5, 6}) = {4, 5, 6} ∩ {1, 2, 3} = ∅
(λX ∈ POW (N).(X ∩ {1, 2, 3}))(Isaak) ist nicht definiert

argument is also a function:

λf ∈ N 7→ N.(f(3))
(λf ∈ N 7→ N.(f(3)))(λx ∈ N.(x2)) = (λx ∈ N.x2)(3) = 32 = 9

(April 26, 2012) Semantics 1 Gerhard Jäger 22 / 28

Lambda Notation

functions can take other functions as arguments
further examples:

(λf.(f(3) + f(4)))(λx.x2 + x+ 1) = (λx.x2 + x+ 1)(3) + (λx.x2 + x+ 1)(4)

= 32 + 3 + 1 + 42 + 4 + 1

= 34

(λf.f(f(3)− 9))(λx.x2 + x+ 1) = (λx.x2 + x+ 1)((λx.x2 + x+ 1)(3)− 9)

= (λx.x2 + x+ 1)((32 + 3 + 1)− 9)

= (λx.x2 + x+ 1)(4)

= 42 + 4 + 1

= 21

(April 26, 2012) Semantics 1 Gerhard Jäger 23 / 28

Lambda Notation

functions can have other functions as values
Likewise, the value of a function can be a function again, e.g.:

λxλy.x+ y

((λx(λy.x+ y))(2))(3) =
= (λy.2 + y)(3)
= 2 + 3 = 5

such functions have a prefix of several lambda operators in a row

we follow the convetions

lambda operators associate to the right
arguments associate to the left
lambda operators bind stronger than arguments
hence: first lambda belongs to first argument, second lambda to second
argument etc.

(April 26, 2012) Semantics 1 Gerhard Jäger 24 / 28

Lambda Notation

functions can have other functions as values

(λx1. · · · .λxn.α)(a1) · · · (cn)

abbreviates
(((λx1.(· · · .(λxn.(α)(a1)))) · · ·)(cn))

(April 26, 2012) Semantics 1 Gerhard Jäger 25 / 28

Lambda Notation

scope, variable binding, renaming of variables

λ operator is similar to quantifier in predicate logic in several respects

as in predicate logic, the name of a variable is inessential:

∀x(P (x)→ Q(x)) = ∀y(P (y)→ Q(y))

λx.x2 + 3x+ 4 = λw.w2 + 3w + 4

it is only important which variable occurrences have the same name,
and which ones have different names

(April 26, 2012) Semantics 1 Gerhard Jäger 26 / 28

Lambda Notation

characteristic functions in lambda notation

characteristic function χM of a set M :

range: {0, 1}
definition: χM (x) = 1 iff x ∈M , 0 otherwise

meaning of sentences of the meta-language is always “true” (i.e,, 1)
or “false” (i.e., 0)

therefore the characteristic function of a set can be expressed as a
λ-term:

λx.x ∈M
examples:

suppose M = {x|x is a man}
then: χM = λx.x is a man

All sets can be expressed as lambda terms.

(April 26, 2012) Semantics 1 Gerhard Jäger 27 / 28

Lambda Notation

representing meanings in lambda notation

It depends on the situation whether or not a given individual has a
certain property.

Situation dependence must be anchored in lexical meaning:

‖horse‖ = λxλs.x is a horse in s
‖red‖ = λxλs.x is red in s
‖talks‖ = λxλs.x talks in s
‖Peter talks‖ = λs.Peter talks in s

(April 26, 2012) Semantics 1 Gerhard Jäger 28 / 28

