Semantics 1

April 26, 2012

Gerhard Jäger

Semantics 1

Explanatory goal

- truth conditions of declarative sentences
- meaning relations between declarative sentences
- compositional computation of sentence meanings

Truth conditions

• Wittgenstein (1922; Tractatus logico philosophicus): Einen Satz verstehen, heißt, wissen, was der Fall ist, wenn er wahr ist. (Man kann ihn also verstehen, ohne zu wissen, ob er wahr ist.)

Sense relations

- Entailment (If A is true, B must also be true.)
- Contradiction (A and B cannot be true at the same time.)
- Synonymy (A and B are true under exactly the same conditions.)
- (In-)Consistency (A can (not) be true.)
- Tautology (A is always true.)

Compositionality

• The meaning of a complex expression is completely determined by the meanings of its parts and the way they are combined.

Set theory and word meanings

• simplifying assumption for the purposes of sentence semantics: meaning of a predicate is identified with the set of objects to which the predicate applies

$$\| horse \| = \{ x | x \text{ is a horse} \}$$

- $||red|| = \{x|x \text{ is red}\}$
- Hyperonymy \approx subset relation

A is a hyperonym of B iff $||B|| \subseteq ||A||$

• z.B. $\|horse\| \subseteq \|animal\|$

Boolean operators

- combination of predicates via *and*, *or*, and *not* can be modeled via set theoretic operations
 - $\|round \text{ and } red\| = \|round\| \cap \|red\|$
 - $\|\text{round or red}\| = \|\text{round}\| \cup \|\text{red}\|$
 - $\| not red \| = \overline{\| red \|}$
- generally:
 - $\|\alpha \text{ and } \beta\| = \|\alpha\| \cap \|\beta\|$
 - $\|\alpha \text{ or } \beta\| = \|\alpha\| \cup \|\beta\|$
 - $\| \operatorname{not} \alpha \| = \| \alpha \|$

Boolsche Operatoren

• set theoretic laws predict semantic equivalences (synonymies):

- red and round ⇔ round and red (commutativity)
- red or round ⇔ round oder red (commutativity)
- red and [round and soft] \Leftrightarrow [red and round] and soft (associativity)
- red or [round or soft] ⇔ [red oder round] oder soft (associativity)
- not [red and round] ⇔ [nicht red] and [nicht round] (de Morgan)

• ...

Set theory and sentence semantics

- truth condition of a sentence are situation dependent: The blackboard is clean. may be true or false, dependening on which blackborad in which room a what time is being refered to
- relativization of truth value to **situation**: *The blackboard is clean* is true in the situation *s* iff (if and only if) the object that is the blackboard in *s* is clean in *s*.
- Meaning of the sentencs (= truth conditions):

|| The blackboard is clean $|| = \{s | \text{the blackboard in } s \text{ is clean in } s\}$

• generelly:

$$\|\phi\| = \{s|\phi \text{ is true in } s\}$$

Sentence meanings are sets of situations!

(April 26, 2012

Semantics 1

What are situations?

• Situations can be spatially and locally bounded:

the blackboard is clean is true in s.

- Situationens can be temporally bounded and spatially unbounded *The universe is expanding* is true in *s*.
- some situations are both spatially and temporally unbounded

2 + 2 = 4 is true in s.

What are situations?

• situations need not be real:

If Kennedy had not been shot, the Vietnam war would have ended in 1964 refers to a hypothetical situation where the sentence Kennedy was shot is false in 1964.

- Semantics deals with *possible situations*
- many authors ignore the possible boundedness of situations and use the term *possible world* (= maximal situations)
- situations in natural language semantics play a role comparable to models in propositional logic and predicate logic

sense relations

• ϕ entails ψ (notation: $\phi \Rightarrow \psi$) iff

 $\|\phi\|\subseteq \|\psi\|$

• ϕ and ψ are contradictory

 $\|\phi\|\cap\|\psi\|=\emptyset$

• ϕ and ψ are equivalent (synonymous) uff

$$\|\phi\| = \|\psi\|$$

- ϕ is inconsistent: $\|\phi\|=\emptyset$
- ϕ is consistent: $\|\phi\| \neq \emptyset$
- ϕ is a tautology: $\|\phi\| = S$ (S: set of all situations)

Boolean operations on clauses

- $\|\phi \text{ and } \psi\| = \|\phi\| \cap \|\psi\|$
- $\bullet \ \|\phi \text{ or } \psi\| = \|\phi\| \cup \|\psi\|$
- $\|$ It is not the case that $\phi\| = \overline{\|\phi\|}$

This leads to general semantic laws, such as

$$\phi \text{ and } \psi \Rightarrow \phi$$

because

$$\|\phi \text{ and } \psi\| = \|\phi\| \cap \|\psi\| \subseteq \|\phi\|$$

functions

various ways to describe functions:

mother	$m: {\sf persons} o {\sf persons}$
	$x\mapsto$ the mother of x
age	$a: persons o natural \ numbers$
	$x \mapsto the age of x$, in years
successor	s: natural numbers $ ightarrow$ natural numbers
	$x \mapsto x + 1$
square	q: natural numbers $ ightarrow$ natural numbers
	$x \mapsto x^2$

functions

• algebraic notation:

$$f(x) = x^2$$

• set theoretic notation:

$$f = \{ \langle x, x^2 \rangle | x \in N \}$$

$\lambda\text{-notation}$ for functions

- originates in logic and theoretica computer science
- very convenient for the purposes of linguistic semantics
- examples:
 - $m:\lambda x.(\text{the mother of }x)$
 - $a:\lambda x.(\text{the age of }x,\text{ in years})$
 - $s:\lambda x.(x+1)$
 - $q:\lambda x.(x^2)$
- such expressions are called lambda terms
- general format:

λ variable.(description of the value of the variable)

- variable is place holder for argument of the function
- expression in parantheses gives recipe for computing the value of the variable
- formation of a lambda term from a description is called *lambda abstraction*

(April 26, 2012)

Semantics 1

computing with lambda terms

$$[\lambda x. (mother of x)](Isaac)$$
 $[\lambda x. x^2](3)$ $=$ mother of Isaac $= 3^2$ $=$ Sarah $= 9$

- General procedure:
 - $\ \, {\rm \textcircled{0}} \ \ {\rm delete \ the } \ \lambda, \ {\rm the \ variable, \ and \ the \ period }$
 - e replace all free occurrences of the variable inside the expression after the period by the argument
 - If possible, simplify the resulting expression
- This operation is called lambda conversion.

lambda notation with domain specification

• functions have a domain:

$$\{\langle x, x^2 \rangle | x \in N\} \neq \{\langle x, x^2 \rangle | x \in R\}$$

- notation $\lambda x.x^2$ is therefore incomplete
- complete notation: specification of the domain in the lambda prefix:
 - $\lambda x \in N.(x^2)$
 - $\lambda x \in R.(x^2)$
- general format:

 λ variable \in domain.(description of function value)

lambda notation with domain specification

- example
 - $(\lambda x \in R.(x^2 + 3x + 2))(-10) = 72$
 - $(\lambda x \in N.(x^2 + 3x + 2))(-10)$ is undefined
- domain specification and parantheses around value description are frequently omitted when no ambiguity arises

variable conventions

- notation with explicit domain specification is cumbersome
- simplification via variable conventions:
 - each variable name is, by convention, associated with a certain domain:
 - $x, y, z, \ldots \in (individuals/entities)$
 - $s, s', s_1, s_2, \ldots : S$ (situations)
 - $P, Q, P', \ldots : S \times E$ (relations between situations and individuals)
 - $R, S, \ldots : S \times E \times E$ (relations between situations and pairs of individuals)
 - p, q, \ldots : POW(S) (sets of sets of individuals)

variable conventions

- as long as not indicated differently, it is tacitly assumed that the value of a variable falls into the corresponding domain
- for example:
 - $\lambda x.\phi$ abbreviates $\lambda x \in E.\phi$
 - $\lambda s'.\phi \quad \text{abbreviates} \quad \lambda s' \in S.\phi$
 - $\lambda P.\phi \quad \text{abbreviates} \quad \lambda P \in S \times E.\phi$
 - $$\label{eq:lambda} \begin{split} \lambda p.\phi \quad \text{abbreviates} \quad \lambda p \in POW(S).\phi \\ \text{etc.} \end{split}$$

functions can take other functions as arguments

- argument of a function may be complex:
 - argument is a set:
 - $\lambda X \in POW(N).(X \cap \{1, 2, 3\})$
 - $(\lambda X \in POW(N).(X \cap \{1, 2, 3\}))(\{2, 3, 4\}) = \{2, 3, 4\} \cap \{1, 2, 3\} = \{2, 3\}$
 - $(\lambda X \in POW(N).(X \cap \{1, 2, 3\}))(\{4, 5, 6\}) = \{4, 5, 6\} \cap \{1, 2, 3\} = \emptyset$
 - $(\lambda X \in POW(N).(X \cap \{1,2,3\}))(Isaak)$ ist nicht definiert
 - argument is also a function:
 - $\lambda f \in N \mapsto N.(f(3))$
 - $(\lambda f \in N \mapsto N.(f(3)))(\lambda x \in N.(x^2)) = (\lambda x \in N.x^2)(3) = 3^2 = 9$

functions can take other functions as arguments further examples:

$$\begin{aligned} (\lambda f.(f(3) + f(4)))(\lambda x.x^2 + x + 1) &= (\lambda x.x^2 + x + 1)(3) + (\lambda x.x^2 + x + 1)(4) \\ &= 3^2 + 3 + 1 + 4^2 + 4 + 1 \\ &= 34 \end{aligned}$$

$$\begin{aligned} (\lambda f.f(f(3) - 9))(\lambda x.x^2 + x + 1) &= (\lambda x.x^2 + x + 1)((\lambda x.x^2 + x + 1)(3) - 9) \\ &= (\lambda x.x^2 + x + 1)((3^2 + 3 + 1) - 9) \\ &= (\lambda x.x^2 + x + 1)(4) \\ &= 4^2 + 4 + 1 \\ &= 21 \end{aligned}$$

Lambda Notation

functions can have other functions as values

Likewise, the value of a function can be a function again, e.g.:

- $\lambda x \lambda y . x + y$
 - $((\lambda x (\lambda y.x + y))(2))(3) =$
 - $\bullet = (\lambda y.2 + y)(3)$
 - = 2 + 3 = 5
- such functions have a prefix of several lambda operators in a row
- we follow the convetions
 - lambda operators associate to the right
 - arguments associate to the left
 - lambda operators bind stronger than arguments
 - hence: first lambda belongs to first argument, second lambda to second argument etc.

functions can have other functions as values

$$(\lambda x_1.\cdots.\lambda x_n.\alpha)(a_1)\cdots(c_n)$$

abbreviates

$$(((\lambda x_1.(\cdots.(\lambda x_n.(\alpha)(a_1))))\cdots)(c_n))$$

scope, variable binding, renaming of variables

- $\bullet~\lambda$ operator is similar to quantifier in predicate logic in several respects
- as in predicate logic, the name of a variable is inessential:

$$\forall x(P(x) \to Q(x)) = \forall y(P(y) \to Q(y))$$
$$\lambda x.x^2 + 3x + 4 = \lambda w.w^2 + 3w + 4$$

• it is only important which variable occurrences have the same name, and which ones have different names

Lambda Notation

characteristic functions in lambda notation

• characteristic function χ_M of a set M:

- range: $\{0,1\}$
- definition: $\chi_M(x) = 1$ iff $x \in M$, 0 otherwise
- meaning of sentences of the meta-language is always "true" (i.e., 1) or "false" (i.e., 0)
- therefore the characteristic function of a set can be expressed as a $\lambda\text{-term:}$

$$\lambda x.x \in M$$

- examples:
 - suppose $M = \{x | x \text{ is a man}\}$
 - then: $\chi_M = \lambda x.x$ is a man

All sets can be expressed as lambda terms.

representing meanings in lambda notation

- It depends on the situation whether or not a given individual has a certain property.
- Situation dependence must be anchored in lexical meaning:
 - $\|horse\| = \lambda x \lambda s. x$ is a horse in s
 - $\|\operatorname{red}\| = \lambda x \lambda s. x$ is red in s
 - $\| talks \| = \lambda x \lambda s. x talks in s$
 - $\|Peter \ talks\| = \lambda s.Peter \ talks \ in \ s$