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I
Sentence semantics

Explanatory goal
@ truth conditions of declarative sentences
@ meaning relations between declarative sentences

@ compositional computation of sentence meanings
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I
Sentence semantics

Truth conditions

e Wittgenstein (1922; Tractatus logico philosophicus):
Einen Satz verstehen, heiBBt, wissen, was der Fall ist, wenn er wahr ist.
(Man kann ihn also verstehen, ohne zu wissen, ob er wahr ist.)
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I
Sentence semantics

Sense relations

Entailment (If A is true, B must also be true.)

Contradiction (A and B cannot be true at the same time.)
Synonymy (A and B are true under exactly the same conditions.)
(In-)Consistency (A can (not) be true.)

Tautology (A is always true.)

(April 26, 2012) Semantics 1 Gerhard Jager 4 /28



I
Sentence semantics

Compositionality

@ The meaning of a complex expression is completely determined by the
meanings of its parts and the way they are combined.
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Set theory and semantics

Set theory and word meanings

@ simplifying assumption for the purposes of sentence semantics:
meaning of a predicate is identified with the set of objects to which
the predicate applies

Q | horse|| = {z|x is a horse}
Q ||red|| = {x|z is red}
© ||speaks|| = {z|x speaks}

@ Hyperonymy = subset relation
A is a hyperonym of B iff ||B]| C || Al

o z.B. ||horse|| C ||animall|
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-
Set theory and semantics

Boolean operators

@ combination of predicates via and, or, and not can be modeled via set
theoretic operations

e ||[round and red|| = ||round|| N || red||
o ||round or red|| = ||round|| U || red||
o ||not red|| = ||red||

@ generally:

o |la and 8|l =[] O[]
o [laor |l = [laff U]

o |[not aff = [l
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-
Set theory and semantics

Boolsche Operatoren
@ set theoretic laws predict semantic equivalences (synonymies):
red and round < round and red (commutativity)
red or round < round oder red (commutativity)
red and [round and soft] < [red and round] and soft (associativity)

red or [round or soft] < [red oder round] oder soft (associativity)
not [red and round] < [nicht red] and [nicht round] (de Morgan)
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-
Set theory and semantics

Set theory and sentence semantics

e truth condition of a sentence are situation dependent:
The blackboard is clean. may be true or false, dependening on which
blackborad in which room a what time is being refered to

e relativization of truth value to situation:
The blackboard is clean is true in the situation s iff (if and only if)
the object that is the blackboard in s is clean in s.

@ Meaning of the sentencs (= truth conditions):
|| The blackboard is clean|| = {s|the blackboard in s is clean in s}

o generelly:

lloll = {s|¢ is true in s}
Sentence meanings are sets of situations!
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-
Set theory and semantics

What are situations?
@ Situations can be spatially and locally bounded:
the blackboard is clean is true in s.
@ Situationens can be temporally bounded and spatially unbounded
The universe is expanding is true in s.
@ some situations are both spatially and temporally unbounded
2+ 2=4istruein s.
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Set theory and semantics

What are situations?

@ situations need not be real:
If Kennedy had not been shot, the Vietnam war would have ended in
1964 refers to a hypothetical situation where the sentence Kennedy
was shot is false in 1964.

@ Semantics deals with possible situations

@ many authors ignore the possible boundedness of situations and use
the term possible world (= maximal situations)

@ situations in natural language semantics play a role comparable to
models in propositional logic and predicate logic
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-
Set theory and semantics

sense relations
@ ¢ entails ¢ (notation: ¢ = ) iff

o]l S [l

@ ¢ and %) are contradictory

ol N il =0

@ ¢ and v are equivalent (synonymous) uff

o]l = [l

@ ¢ is inconsistent: |||l = 0
@ ¢ is consistent: ||¢|| # 0
@ ¢ is a tautology: ||¢|| = S (S: set of all situations)
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-
Set theory and semantics

Boolean operations on clauses

° [l¢ and P = [|oll N [||
o [lg or ¢l = llofl Ul

@ || It is not the case that ¢| = W

This leads to general semantic laws, such as

¢ and ¢y = ¢

because

l¢ and ¥[| = [l N [[¥] < [l
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-
Set theory and semantics

functions

various ways to describe functions:

||mother]|
lagel
||successor||

Isquare]

(April 26, 2012)

M : persons — persons

x +— the mother of x

a : persons — natural numbers

x + the age of z, in years

s : natural numbers — natural numbers
r—x+1

q : natural numbers — natural numbers

x>z’
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Set theory and semantics

functions

@ algebraic notation:

@ set theoretic notation:
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Set

theory and semantics

A-notation for functions

originates in logic and theoretica computer science

very convenient for the purposes of linguistic semantics
examples:

m : Az.(the mother of x)

a : Ax.(the age of z, in years)

s: Az (z+1)

q: \v.(2?)

such expressions are called lambda terms

@ general format:

A variable.(description of the value of the variable)
variable is place holder for argument of the function
expression in parantheses gives recipe for computing the value of the
variable
formation of a lambda term from a description is called lambda
abstraction
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Lambda notation

computing with lambda terms

[Az.(mother of z)](Isaac) [Az.22](3)
= mother of Isaac =32
= Sarah =9

@ General procedure:

@ delete the ), the variable, and the period
@ replace all free occurrences of the variable inside the expression after

the period by the argument
© if possible, simplify the resulting expression

@ This operation is called lambda conversion.
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N —
Lambda notation

lambda notation with domain specification

@ functions have a domain:
{{z,2%)]z € N} £ {(z,2%)]z € R}

@ notation \z.z? is therefore incomplete

@ complete notation: specification of the domain in the lambda prefix:
o \z € N.(z?)
e Az € R.(zQ)

@ general format:
A variable € domain.(description of function value)
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N —
Lambda notation

lambda notation with domain specification
@ example
o (\r € R.(z* + 3z +2))(—10) = 72
o (A\x € N.(z2+ 3z +2))(—10) is undefined
@ domain specification and parantheses around value description are
frequently omitted when no ambiguity arises
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N —
Lambda notation

variable conventions

@ notation with explicit domain specification is cumbersome

@ simplification via variable conventions:
e each variable name is, by convention, associated with a certain domain:

z,y,2,.... E (individuals/entities)

8,8, 81, 82,.... S (situations)

P,Q,P',...: S x E (relations between situations and individuals)
R,S,...: 8 x E x E (relations between situations and pairs of
individuals)

® p,q,.... POW(S) (sets of sets of individuals)
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]
Lambda Notation

variable conventions

@ as long as not indicated differently, it is tacitly assumed that the value
of a variable falls into the corresponding domain

o for example:
Azr.¢p abbreviates Az € E.¢
As'.¢ abbreviates \s' € S.¢
AP.¢ abbreviates AP €S x E.¢
Ap.¢  abbreviates Ap € POW(S).¢
etc.
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]
Lambda Notation

functions can take other functions as arguments

@ argument of a function may be complex:

e argument is a set:
o AX € POW(N).(X N{1,2,3})
o (AX € POW(N).(X N{1,2,3}))({2,3,4}) = {2,3,4} N {1,2,3} =

2,3

o gAX}e POW(N).(X N {1,2,31))({4,5,6}) = {4,5,6} N {1,2,3} = 0
e (AX € POW(N).(X Nn{1,2,3}))(Isaak) ist nicht definiert

e argument is also a function:
o Af €N = N.(f(3))
o \fE€Nw— N.(f(3)\x € N.(2?)) = Az € Na*)(3) =32 =
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Lambda Notation

functions can take other functions as arguments

further examples:

AL(FB) 4+ fFA))Aza? +z+1) =

ALFB) =9 Dea® +z+1) =

Aza?+z+1)3) + A\za? 42 +1)(4)
32 434+1+42+4+1
34

A\z.z? + 2+ D (Oza?+z+1)(3) - 9)
Az + 2+ 1)((32+3+1)—9)
(Az.2z® 4+ 2 +1)(4)

424441

21
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]
Lambda Notation

functions can have other functions as values
Likewise, the value of a function can be a function again, e.g.:
o \x)\y.x+y
o (Mg +9))(2)(3) =
o = (.2 +9)(3)
e =2+4+3=5
@ such functions have a prefix of several lambda operators in a row
@ we follow the convetions

e lambda operators associate to the right

e arguments associate to the left

e lambda operators bind stronger than arguments

e hence: first lambda belongs to first argument, second lambda to second
argument etc.
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]
Lambda Notation

functions can have other functions as values

(Az1. - Azp.a)(ar) - (cn)

abbreviates

(((Az1.(-- . (Azn-(a)(a1)))) -+ )(en))
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]
Lambda Notation

scope, variable binding, renaming of variables
@ )\ operator is similar to quantifier in predicate logic in several respects

@ as in predicate logic, the name of a variable is inessential:

Va(P(z) = Q(z)) Vy(P(y) = Qy))
A2’ +324+4 = Iwaw?+3w+4

@ it is only important which variable occurrences have the same name,
and which ones have different names
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]
Lambda Notation

characteristic functions in lambda notation
@ characteristic function x s of a set M:
e range: {0,1}
o definition: xps(z) = 1 iff 2 € M, 0 otherwise
@ meaning of sentences of the meta-language is always “true” (i.e,, 1)
or “false” (i.e., 0)
@ therefore the characteristic function of a set can be expressed as a
A-term:
Ar.x € M

@ examples:
e suppose M = {z|z is a man}
e then: xps = A\x.x is a man

All sets can be expressed as lambda terms.
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]
Lambda Notation

representing meanings in lambda notation

@ It depends on the situation whether or not a given individual has a
certain property.
@ Situation dependence must be anchored in lexical meaning:

o ||horse|| = AxAs.x is a horse in s
o |lred|| = AxAs.x is red in s

o |[talks| = AxAs.x talks in s

o ||Peter talks|| = As.Peter talks in s
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