Semantics 1

July 17, 2012

Gerhard Jäger

(July 17, 2012) Semantics 1 Gerhard Jäger 1 / 43

Signaling games

- sequential game:
 - lacktriangle nature chooses a world w
 - ullet out of a pool of possible worlds W
 - ullet according to a certain probability distribution p^*
 - $oldsymbol{2}$ nature shows w to sender $oldsymbol{\mathsf{S}}$
 - $oldsymbol{0}$ S chooses a message m out of a set of possible signals M
 - $oldsymbol{\bullet}$ S transmits m to the receiver $oldsymbol{\mathsf{R}}$
 - \odot R chooses an action a, based on the sent message.
- ullet Both S and R have preferences regarding R's action, depending on w.
- ullet S might also have preferences regarding the choice of m (to minimize signaling costs).

Tea or coffee?

An example

- Sally either prefers tea (w_1) or coffee (w_2) , with $p^*(w_1) = p^*(w_2) = \frac{1}{2}$.
- Robin either serves tea (a_1) or coffee (a_2) .
- Sally can send either of two messages:
 - m_1 : I prefer tea.
 - m_2 : I prefer coffee.
- Both messages are costless.

Table: utility matrix

Extensive form

Extensive form

(July 17, 2012)

Extensive form

A coordination problem

- two strict Nash equilibria
 - S always says the truth and R always believes her.
 - S always says the opposite of the truth and R interprets everything ironically.
- Both equilibria are equally rational.
- Still, first equilibrium is more reasonable because it employs exogenous meanings of messages for equilibrium selection.
- Criterion for equilibrium selection:

Always say the truth, and always believe what you are told!

• What happens if it is not always rational to be honest/credulous?

Partially aligned interests

Rabin's (1990) example

- In w_1 and w_2 , S and R have identical interests.
- In w_3 , S would prefer R to believe in w_2 .
- The propositions $\{w_1\}$ and $\{w_2, w_3\}$ are *credible*.
- The propositions $\{w_2\}$ and $\{w_3\}$ are not credible.

	a_1	a_2	a_3
w_1	10, 10	0, 0	0,0
w_2	0,0	10, 10	5, 7
w_3	0,0	10, 0	5, 7

Table: Partially aligned interests

Partially aligned interests

Rabin's (1990) example

- Suppose there are three messages:
 - m_1 : We are in w_1 .
 - m_2 : We are in w_2 .
 - m_3 : We are in w_3 .
- ullet reasonable S will send m_1 if and only if w_1
- ullet reasonable R will react to m_1 with a_1
- nothing else can be inferred

	a_1	a_2	a_3
$\overline{w_1}$	10, 10	0, 0	0,0
w_2	0,0	10, 10	5,7
w_3	0,0	10, 0	5,7

Table: Partially aligned interests

Revised maxim

Always say the truth, and always believe what you are told, unless you have reasons to do otherwise!

But what does this mean?

IBR sequence for Rabin's example

σ_0	m_1	m_2	m_3	ρ_0	a_1	a_2	a_3
$\overline{w_1}$	1	0	0	$\overline{m_1}$	1	0	0
w_2	0	1	0	m_2	0	1	0
w_3	0	0	1	m_3	0	0	1
σ_1	m_1	m_2	m_3	ρ_2	a_1	a_2	a_3
$\overline{w_1}$	1	0	0	$\overline{m_1}$	1	0	0
w_2	0	1	0	m_2	0	0	1
w_3	0	1	0	m_3	0	0	1
σ_2	m_1	m_2	m_3	ρ_1	a_1	a_2	a_3
$\overline{w_1}$	1	0	0	$\overline{m_1}$	1	0	0
w_2	0	$\frac{1}{2}$	$\frac{1}{2}$	m_2	0	0	1
w_3	0	$\frac{1}{2}$	$\frac{1}{2}$	m_3	0	0	1

$$F = (\sigma_2, \rho_1)$$

- How does this relate to linguistic examples?
- There is a quasi-algorithmic procedure (due to Franke 2009) how to construct a game from an example sentence.

What is given?

- example sentence
- set of expression alternatives
- jointly form set of messages
- question under discussion QUD
- set of complete answers to QUD is the set of possible worlds

What do we need?

- interpretation function $\|\cdot\|$
- prior probability distribution p*
- set of actions
- utility functions

QUD

- often QUD is not given explicitly
- \bullet procedure to construct QUD from expression m and its alternatives ALT(m) :
 - Let ct be the context of utterances, i.e. the maximal set of statements that is common knowledge between Sally and Robin.
 - any subset w of $ALT(m) \cup \{ \neg m' | m' \in ALT(m) \}$ is a possible world iff
 - ullet w and ct are consistent, i.e. $w \cup ct \not\vdash \bot$
 - for any set $X: w \subset X \subseteq ALT(m) \cup \{\neg m' | m' \in ALT(m)\}$, $ct \cup X$ is inconsistent

(July 17, 2012) Semantics 1 Gerhard Jäger 13 / 43

Game construction

• interpretation function:

$$||m'|| = \{w|w \vdash m\}$$

- p* is uniform distribution over W
- justified by principle of insufficient reason
- ullet set of actions is W
- intuitive idea: Robin's task is to figure out which world Sally is in
- utility functions:

$$u_{s/r}(w,a) = \begin{cases} 1 & \text{iff } w = a \\ 0 & \text{else} \end{cases}$$

both players want Robin to succeed

Example: Quantity implicatures

- (1) a. Who came to the party?
 - b. SOME: Some boys came to the party.
 - c. NO: No boys came to the party.
 - d. ALL: All boys came to the party.

Game construction

- \bullet $ct = \emptyset$
- $\bullet \ W = \{w_{\neg\exists}, w_{\exists\neg\forall}, w_{\forall}\}\$
- $w_{\neg \exists} = \{\text{NO}\}, w_{\exists \neg \forall} = \{\text{SOME}\}, w_{\forall} = \{\text{SOME, ALL}\}$
- $p^* = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

• interpretation function:

$$\|\text{SOME}\| = \{w_{\exists \neg \forall}, w_{\forall}\}$$
$$\|\text{NO}\| = \{w_{\neg \exists}\}$$
$$\|\text{ALL}\| = \{w_{\forall}\}$$

utilities:

	$a_{\neg \exists}$	$a_{\exists \neg \forall}$	a_{\forall}
$w_{\neg \exists}$	1,1	0,0	0,0
$w_{\exists \neg \forall}$	0,0	1, 1	0,0
w_{\forall}	0,0	0,0	1, 1

- utility functions are identity matrices
- therefore the step *multiply with utility matrix* can be omitted in best response computation
- also, restriction to uniform priors makes simplifies computation of posterior distribution
- simplified IBR computation:

Sally

- flip ρ along diagonal
- place a 0 in each cell that is non-maximal within its row
- normalize each row

Robin

- lacktriangledown flip σ along diagonal
- if a row contains only 0s, fill in a 1 in each cell corresponding to a true world-message association
- place a 0 in each cell that is non-maximal within its row
- normalize each row

Example: Quantity implicatures

σ_0	NO	SOME	ALL		$ ho_0$	$w_{\neg \exists}$	$w_{\exists \neg \forall}$	w_{\forall}
$w_{\neg \exists}$	1	0	0	-	NO	1	0	0
$w_{\exists \neg \forall}$	0	1	0		SOME	0	1	0
w_{\forall}	0	$\frac{1}{2}$	$\frac{1}{2}$		ALL	0	0	1
σ_1	NO	SOME	ALL		$ ho_1$	$w_{\neg\exists}$	$w_{\exists \neg \forall}$	w_{\forall}
$rac{\sigma_1}{w_{\neg \exists}}$	NO 1	SOME 0	ALL 0	: =	ρ_1	$w_{\neg \exists}$	$w_{\exists \neg \forall}$	w_{\forall}
	NO 1 0			: =	•	<i>w</i> ¬∃ 1 0		

$$F = (\rho_0, \sigma_1)$$

In the fixed point, SOME is interpreted as entailing $\neg ALL$, i.e. exhaustively.

(July 17, 2012) Semantics 1 Gerhard Jäger 18 / 43

- So far, it is hard-wired in the model that Sally has complete knowledge (or, rather, complete belief — whether or not she is right is inessential for IBR) about the world she is in.
- corresponds to strong version of competence assumption
- Sometimes this assumption is too strong:

- **1** a. Ann or Bert showed up. (= OR)
 - b. Ann showed up. (= A)
 - c. Bert showed up. (= B)
 - d. Ann and Bert showed up. (= AND)

- w_a : Only Ann showed up.
- w_b : Only Bert showed up.
- w_{ab} : Both showed up.

Utility matrix

	a_a	a_b	a_{ab}
$\overline{w_a}$	1	0	0
w_b	0	1	0
w_{ab}	0	0	1

IBR sequence

σ_0	OR	A	В	AND
w_a	$\frac{1}{2}$	$\frac{1}{2}$	0	0
w_b	$\frac{1}{2}$	0	$\frac{1}{2}$	0
w_{ab}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
σ_1	OR	A	В	AND
$\frac{\sigma_1}{w_a}$	OR 0	A 1	В 0	AND 0
w_a	0	1	0	0

ρ_0	w_a	w_b	w_{ab}
OR	$\frac{1}{2}$	$\frac{1}{2}$	0
A	1	0	0
В	0	1	0
AND	0	0	1
ρ_1	w_a	w_b	w_{ab}
OR	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
A	1	0	0
В	0	1	0
AND	0		1

 $\mathrm{OR}\xspace$ comes out as a message that would never be used!

- full competence assumption is arguably too strong
- weaker assumption (Franke 2009):
 - Sally's information states are partial answers to QUD, ie. sets of possible worlds
 - Robin's task is to figure out which information state Sally is in.
 - ceteris paribus, Robin receives slightly higher utility for smaller (more informative) states

Costs

- Preferences that are independent from correct information transmission are captured via *cost functions* for sender and receiver.
- For the sender this might be, inter alia, a preference for simpler expressions.
- For the receiver, the *Strongest Meaning Hypothesis* is a good candiate.

(July 17, 2012) Semantics 1 Gerhard Jäger 22 / 43

Formally

- cost functions c_s, c_r : $c_s : (POW(W) \{\emptyset\}) \times M \mapsto \mathbb{R}^+$
- costs are nominal:

$$0 \le c_s(i, m), c_r(i, m) < \min(\frac{1}{|POW(W) - \emptyset|^2}, \frac{1}{|ALT(m)|^2})$$

- guarantees that cost considerations never get in the way of information transmission considerations
- new utility functions:

$$u_s(i, m, a) = -c_s(i, m) + \begin{cases} 1 & \text{if } i = a, \\ 0 & \text{else}, \end{cases}$$

$$u_r(i, m, a) = -c_r(a, m) + \begin{cases} 1 & \text{if } i = a, \\ 0 & \text{else}. \end{cases}$$

Modified IBR procecure

Sally

- \bullet flip ρ along the diagonal
- subtract c_s
- place a 0 in each cell that is non-maximal within its row
- normalize each row

Robin

- ullet flip σ along diagonal
- if a row contains only 0s,
 - fill in a 1 in each cell corresponding to a true world-message association
- else
 - $\bullet \ \, \mathrm{subtract} \,\, c_r^T \\$
- place a 0 in each cell that is non-maximal within its row
- normalize each row

The Strongest Meaning Hypothesis

- if in doubt, Robin will assume that Sally is competent
- captured in following cost function:

$$c_r(a, m) = \frac{|a|}{\max(|M|, 2^{|W|})^2}$$

$$c_r(\{w_a\}, \cdot) = \frac{1}{49} \quad c_r(\{w_a, w_{ab}\}, \cdot) = \frac{2}{49}$$

$$c_r(\{w_b\}, \cdot) = \frac{1}{49} \quad c_r(\{w_b, w_{ab}\}, \cdot) = \frac{2}{49}$$

$$c_r(\{w_{ab}\}, \cdot) = \frac{1}{49} \quad c_r(\{w_a, w_b, w_{ab}\}, \cdot) = \frac{3}{49}$$

$$c_r(\{w_a, w_b\}, \cdot) = \frac{2}{49}$$

IBR sequence: 1

σ_0	OR	A	В	AND
$\{w_a\}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$\{w_b\}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0
$\{w_{ab}\}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$\{w_a, w_b\}$	1	0	0	0
$\{w_a, w_{ab}\}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$\{w_b, w_{ab}\}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0
$\{w_a, w_b, w_{ab}\}$	1	0	0	0

IBR sequence: flipping and subtracting costs

ρ_0	$\{w_a\}$	$\{w_b\}$	$\{w_{ab}\}$	$\{w_a, w_b\}$	$\{w_a, w_{ab}\}$	$\{w_b, w_{ab}\}$	$\{w_a, w_b, w_{ab}\}$
OR	0.48	0.48	0.23	0.96	0.46	0.46	0.94
A	0.48	-0.02	0.23	-0.04	0.46	-0.04	-0.06
В	-0.02	0.48	0.23	-0.04	-0.04	0.46	-0.06
AND	-0.02	-0.02	0.23	-0.04	-0.04	-0.04	-0.06

(July 17, 2012) Semantics 1 Gerhard Jäger 27 / 43

IBR sequence: 2

ρ_0	$\{w_a\}$	$\{w_b\}$	$\{w_{ab}\}$	$\{w_a, w_b\}$	$\{w_a, w_{ab}\}$	$\{w_b, w_{ab}\}$	$\{w_a, w_b, w_{ab}\}$
OR	0	0	0	1	0	0	0
A	1	0	0	0	0	0	0
В	0	1	0	0	0	0	0
AND	0	0	1	0	0	0	0

(July 17, 2012) Semantics 1 Gerhard Jäger 28 / 43

IBR sequence: 3

σ_1	OR	A	В	AND
$\{w_a\}$	0	1	0	0
$\{w_b\}$	0	0	1	0
$\{w_{ab}\}$	0	0	0	1
$\{w_a, w_b\}$	1	0	0	0
$\{w_a, w_{ab}\}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$\{w_b, w_{ab}\}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0
$\{w_a, w_b, w_{ab}\}$	1	0	0	0

- ullet OR is only used in $\{w_a,w_b\}$ in the fixed point
- this means that it carries two implicatures:
 - exhaustivity: Ann and Bert did not both show up
 - ignorance: Sally does not know which one of the two disjuncts is true

Semantics 1 Gerhard Jäger 30 / 43

Sender costs

- **2** a. Ann or Bert or both showed up. (= AB-OR)
 - **b**. Ann showed up. (= A)
 - c. Bert showed up. (= B)
 - d. Ann and Bert showed up. (= AND)
 - e. Ann or Bert showed up. (= OR)
 - f. Ann or both showed up. (= A-OR)
 - g. Bert or both showed up. (= B-OR)
- Message (e) is arguably more efficient for Sally than (a)
- Let us say that $c_s(\cdot, \text{AB-OR}) = \frac{1}{50}, c_s(\cdot, \text{A-OR}) = c_s(\cdot, \text{B-OR}) = \frac{1}{75}, c_s(\cdot, \text{OR}) = c_s(\cdot, \text{AND}) = \frac{1}{100}$, and $c_s(\cdot, \text{A}) = c_s(\cdot, \text{B}) = 0$.

IBR sequence: 1

σ_0	AB-OR	A	В	AND	OR	A-OR	B-OR
$\{w_a\}$	$\frac{1}{4}$	$\frac{1}{4}$	0	0	$\frac{1}{4}$	$\frac{1}{4}$	0
$\{w_b\}$	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$
$\{w_{ab}\}$	$\frac{1}{7}$						
$\{w_a, w_b\}$	$\frac{1}{2}$	0	0	0	$\frac{1}{2}$	0	0
$\{w_a, w_{ab}\}$	$\frac{1}{4}$	$\frac{1}{4}$	0	0	$\frac{1}{4}$	$\frac{1}{4}$	0
$\{w_b, w_{ab}\}$	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$
$\{w_a, w_b, w_{ab}\}$	$\frac{1}{2}$	0	0	0	$\frac{1}{2}$	0	0

IBR sequence: 1

ρ_0	$\{w_a\}$	$\{w_b\}$	$\{w_{ab}\}$	$\{w_a, w_b\}$	$\{w_a, w_{ab}\}$	$\{w_b, w_{ab}\}$	$\{w_a, w_b, w_{ab}\}$
AB-OR	0	0	0	1	0	0	0
A	1	0	0	0	0	0	0
В	0	1	0	0	0	0	0
AND	0	0	1	0	0	0	0
OR	0	0	0	1	0	0	0
A-OR	1	0	0	0	0	0	0
B-OR	0	1	0	0	0	0	0

(July 17, 2012) Semantics 1 Gerhard Jäger 33 / 43

IBR sequence: 2

σ_1	AB-OR	A	В	AND	OR	A-OR	B-OR
$\{w_a\}$	0	1	0	0	0	0	0
$\{w_b\}$	0	0	1	0	0	0	0
$\{w_{ab}\}$	0	0	0	1	0	0	0
$\{w_a, w_b\}$	0	0	0	0	1	0	0
$\{w_a, w_{ab}\}$	0	1	0	0	0	0	0
$\{w_b, w_{ab}\}$	0	0	1	0	0	0	0
$\{w_a, w_b, w_{ab}\}$	0	0	0	0	1	0	0

34 / 43

IBR sequence: 2

ρ_1	$\{w_a\}$	$\{w_b\}$	$\{w_{ab}\}$	$\{w_a, w_b\}$	$\{w_a, w_{ab}\}$	$\{w_b, w_{ab}\}$	$\{w_a, w_b, w_{ab}\}$
ORBOTH	$\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$
A	1	0	0	0	0	0	0
В	0	1	0	0	0	0	0
AND	0	0	1	0	0	0	0
OR	0	0	0	1	0	0	0
A-OR	$\frac{1}{3}$	0	$\frac{1}{3}$	0	$\frac{1}{3}$	0	0
B-OR	0	$\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{1}{3}$	0

IBR sequence: 3

σ_2	AB-OR	A	В	AND	OR	A-OR	B-OR
$\{w_a\}$	0	1	0	0	0	0	0
$\{w_b\}$	0	0	1	0	0	0	0
$\{w_{ab}\}$	0	0	0	1	0	0	0
$\{w_a, w_b\}$	0	0	0	0	1	0	0
$\{w_a, w_{ab}\}$	0	0	0	0	0	1	0
$\{w_b, w_{ab}\}$	0	0	0	0	0	0	1
$\{w_a, w_b, w_{ab}\}$	1	0	0	0	0	0	0

IBR sequence: 3

$ ho_2$	$\{w_a\}$	$\{w_b\}$	$\{w_{ab}\}$	$\{w_a, w_b\}$	$\{w_a, w_{ab}\}$	$\{w_b, w_{ab}\}$	$\{w_a, w_b, w_{ab}\}$
ORBOTH	0	0	0	0	0	0	1
A	1	0	0	0	0	0	0
В	0	1	0	0	0	0	0
AND	0	0	1	0	0	0	0
OR	0	0	0	1	0	0	0
A-OR	0	0	0	0	1	0	0
B-OR	0	0	0	0	0	1	0

(July 17, 2012) Semantics 1 Gerhard Jäger 37 / 43

I-implicatures

- (2) a. John opened the door. (= OPEN)
 - b. John opened the door using the handle. (= OPEN-H)
 - c. John opened the door with an axe. (= OPEN-A)

formally

- $W = \{w_h, w_a\}$
- $p^*(w_1) = \frac{2}{3}, p^*(w_2) = \frac{1}{3}$
- $\bullet \ \|\text{OPEN-H}\| = \{w_h\}, \ \|\text{OPEN-A}\| = \{w_a\},$ and $\|\text{OPEN}\| = \{w_h, w_a\}$
- $c(m_1) = c(m_2) \in \frac{1}{20}$, $c(m_3) = 0$

	a_h	a_a
w_h	1, 1	0, 0
w_a	0,0	1, 1
w_a	0,0	1, 1

38 / 43

(July 17, 2012) Semantics 1 Gerhard Jäger

I-implicatures

σ_0	OPEN	OPEN-H	OPEN-A
w_h w_a	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\frac{1}{2}$	$0 \\ \frac{1}{2}$

ρ_0	w_h	w_a
	4	0
OPEN	1	0
OPEN-H	1	0
OPEN-A	0	1

σ_1	OPEN	OPEN-H	OPEN-A
$w_h \\ w_a$	1 0	0	0 1

$$F = (\sigma_1, \rho_0)$$

Measure terms

Krifka (2002,2007) notes that measure terms can be used in a precise or in a vague way, and that more complex expressions are less likely to be used in a vague way. Here is a schematic analysis:

- ullet w_1,w_3 : 100 meter, w_2,w_4 : 101 meter
- m_{100} : "one hundred meter" m_{101} : "one hundred and one meter" m_{ex100} : "exactly one hundred meter"
- $||m_{100}|| = ||m_{ex100}|| = \{w_1, w_3\},$ $||m_{101}|| = \{w_2, w_4\}$
- $c(m_{100}) = 0$, $c(m_{101}) = c(m_{ex100}) = 0.15$
- a_1, a_3 : 100, a_2, a_4 : 101

- in w_1, w_2 precision is important
- in w_3, w_4 precision is not important

	a_1	a_2	a_3	a_4
	1	0.5	1	0.5
w_1	1	0.5	1	0.5
w_2	0.5	1	0.5	1
w_3	1	0.9	1	0.9
w_4	0.9	1	0.9	1

Measure terms

σ_0	m_{100}	m_{101}	m_{ex100}
	1	0	1
w_1	$\frac{1}{2}$	0	$\frac{1}{2}$
w_2	0	1	0
w_3	$\frac{1}{2}$	0	$\frac{1}{2}$
w_4	0	1	0

ρ_0	a_1	a_2	a_3	a_4
$m_{100} \\ m_{101} \\ m_{ex100}$	$\begin{array}{c} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{array}$	$\begin{array}{c} 0\\ \frac{1}{2}\\ 0 \end{array}$	$\begin{array}{c} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{array}$	$\begin{array}{c} 0\\ \frac{1}{2}\\ 0 \end{array}$

σ_1	m_{100}	m_{101}	m_{ex100}
w_1	1	0	0
w_2	0	1	0
w_3	1	0	0
w_4	1	0	0

ρ_1	a_1	a_2	a_3	a_4
$m_{100} \\ m_{101} \\ m_{ex100}$	$\begin{array}{c} \frac{1}{3} \\ 0 \\ \frac{1}{2} \end{array}$	0 1 0	$\begin{array}{c} \frac{1}{3} \\ 0 \\ \frac{1}{2} \end{array}$	$\begin{array}{c} \frac{1}{3} \\ 0 \\ 0 \end{array}$

σ_2	m_{100}	m_{101}	m_{ex100}
w_1	0	0	1
w_2	0	1	0
w_3	1	0	0
w_{4}	1	0	0

ρ_2	a_1	wa_2	a_3	a_4
$m_{100} \\ m_{101} \\ m_{ex100}$	0 0 1	0 1 0	$\begin{array}{c} \frac{1}{2} \\ 0 \\ 0 \end{array}$	$\frac{1}{2}$ 0

M-implicatures

- **3** a. John stopped the car. (= STOP)
 - b. John made the car stop. (= MAKE-STOP)
 - w_1 : John used the foot brake.
 - w₂: John drove the car against a wall.
 - $\|\text{STOP}\| = \|\text{MAKE-STOP}\| = \{w_1, w_2\}$
 - c(STOP) = 0; c(MAKE-STOP = 0.1
 - $p^*(w_1) = .8;$ $p^*(w_2) = .2.$

Utility matrix

$$\begin{array}{c|ccc}
 & a_1 & a_2 \\
\hline
 & w_1 & 1 & 0 \\
 & w_2 & 0 & 1
\end{array}$$

M-implicatures

IBR sequence

σ_0	STOP	MAKE-STOP	ρ_0	a_1	a_2
w_1 w_2	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	STOP MAKE-STOP	1 1	0
σ_1	STOP	MAKE-STOP	$ ho_1$	a_1	a_2
w_1 w_2	1 1	0	STOP MAKE-STOP	$\frac{1}{\frac{1}{2}}$	$0\\ \frac{1}{2}$
σ_2	STOP	MAKE-STOP	$ ho_2$	a_1	a_2
w_1 w_2	1 0	0	STOP MAKE-STOP	1 0	0 1