Semantics 1

July 17, 2012

Gerhard Jäger

Signaling games

- sequential game:
(1) nature chooses a world w
- out of a pool of possible worlds W
- according to a certain probability distribution p^{*}
(2) nature shows w to sender \mathbf{S}
(3) S chooses a message m out of a set of possible signals M
(4) S transmits m to the receiver \mathbf{R}
(5) R chooses an action a, based on the sent message.
- Both S and R have preferences regarding R's action, depending on w.
- S might also have preferences regarding the choice of m (to minimize signaling costs).

Tea or coffee?

An example

- Sally either prefers tea $\left(w_{1}\right)$ or coffee $\left(w_{2}\right)$, with $p^{*}\left(w_{1}\right)=p^{*}\left(w_{2}\right)=\frac{1}{2}$.
- Robin either serves tea $\left(a_{1}\right)$ or coffee $\left(a_{2}\right)$.
- Sally can send either of two messages:
- m_{1} : I prefer tea.
- m_{2} : I prefer coffee.
- Both messages are costless.

Extensive form

Extensive form

Extensive form

A coordination problem

- two strict Nash equilibria
- S always says the truth and R always believes her.
- S always says the opposite of the truth and R interprets everything ironically.
- Both equilibria are equally rational.
- Still, first equilibrium is more reasonable because it employs exogenous meanings of messages for equilibrium selection.
- Criterion for equilibrium selection:

> Always say the truth, and always believe what you are told!

- What happens if it is not always rational to be honest/credulous?

Partially aligned interests

Rabin's (1990) example

- In w_{1} and $w_{2}, \mathrm{~S}$ and R have identical interests.
- In $w_{3}, \mathrm{~S}$ would prefer R to believe in w_{2}.
- The propositions $\left\{w_{1}\right\}$ and $\left\{w_{2}, w_{3}\right\}$ are credible.
- The propositions $\left\{w_{2}\right\}$ and $\left\{w_{3}\right\}$ are not credible.

	a_{1}	a_{2}	a_{3}
w_{1}	10,10	0,0	0,0
w_{2}	0,0	10,10	5,7
w_{3}	0,0	10,0	5,7

Table: Partially aligned interests

Partially aligned interests

Rabin's (1990) example

- Suppose there are three messages:
- m_{1} : We are in w_{1}.
- $m_{2}:$ We are in w_{2}.
- $m_{3}:$ We are in w_{3}.
- reasonable S will send m_{1} if and only if w_{1}
- reasonable R will react to m_{1} with a_{1}

Table: Partially aligned interests

- nothing else can be inferred

Revised maxim

Always say the truth, and always believe what you are told, unless you have reasons to do otherwise!

But what does this mean?

IBR sequence for Rabin's example

σ_{0}	m_{1}	m_{2}	m_{3}	ρ_{0}	a_{1}	a_{2}	a_{3}
w_{1}	1	0	0	m_{1}	1	0	0
w_{2}	0	1	0	m_{2}	0	1	0
w_{3}	0	0	1	m_{3}	0	0	1
σ_{1}	m_{1}	m_{2}	m_{3}	ρ_{2}	a_{1}	a_{2}	a_{3}
w_{1}	1	0	0	m_{1}	1	0	0
w_{2}	0	1	0	m_{2}	0	0	1
w_{3}	0	1	0	m_{3}	0	0	1
σ_{2}	m_{1}	m_{2}	m_{3}	ρ_{1}	a_{1}	a_{2}	a_{3}
w_{1}	1	0	0	m_{1}	1	0	0
w_{2}	0	$\frac{1}{2}$	$\frac{1}{2}$	m_{2}	0	0	1
w_{3}	0	$\frac{1}{2}$	$\frac{1}{2}$	m_{3}	0	0	1

Interpretation games

- How does this relate to linguistic examples?
- There is a quasi-algorithmic procedure (due to Franke 2009) how to construct a game from an example sentence.

What is given?

- example sentence
- set of expression alternatives
- jointly form set of messages
- question under discussion QUD
- set of complete answers

What do we need?

- interpretation function $\|\cdot\|$
- prior probability distribution p^{*}
- set of actions
- utility functions to QUD is the set of possible worlds

Interpretation games

QUD

- often QUD is not given explicitly
- procedure to construct QUD from expression m and its alternatives ALT(m):
- Let $c t$ be the context of utterances, i.e. the maximal set of statements that is common knowledge between Sally and Robin.
- any subset w of $A L T(m) \cup\left\{\neg m^{\prime} \mid m^{\prime} \in A L T(m)\right\}$ is a possible world iff
- w and $c t$ are consistent, i.e. $w \cup c t \nvdash \perp$
- for any set $X: w \subset X \subseteq A L T(m) \cup\left\{\neg m^{\prime} \mid m^{\prime} \in A L T(m)\right\}$, ct $\cup X$ is inconsistent

Interpretation games

Game construction

- interpretation function:

$$
\left\|m^{\prime}\right\|=\{w \mid w \vdash m\}
$$

- p^{*} is uniform distribution over W
- justified by principle of insufficient reason
- set of actions is W
- intuitive idea: Robin's task is to figure out which world Sally is in
- utility functions:

$$
u_{s / r}(w, a)= \begin{cases}1 & \text { iff } w=a \\ 0 & \text { else }\end{cases}
$$

- both players want Robin to succeed

Example: Quantity implicatures

(1) a. Who came to the party?
b. some: Some boys came to the party.
c. NO: No boys came to the party.
d. ALL: All boys came to the party.

Game construction

- $c t=\emptyset$
- $W=\left\{w_{\neg \exists}, w_{\exists \neg \forall}, w_{\forall}\right\}$
- $w_{\neg ヨ}=\{\mathrm{NO}\}, w_{\exists \neg \forall}=$ $\{$ SOME $\}, w_{\forall}=\{$ SOME, ALL $\}$
- $p^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
- interpretation function:

$$
\begin{aligned}
\|\mathrm{SOME}\| & =\left\{w_{\exists \rightarrow \forall}, w_{\forall}\right\} \\
\|\mathrm{NO}\| & =\left\{w_{\neg \exists}\right\} \\
\|\mathrm{ALL}\| & =\left\{w_{\forall}\right\}
\end{aligned}
$$

- utilities:

$$
\begin{array}{cccc}
& a_{\neg \exists} & a_{\exists \neg \forall} & a_{\forall} \\
\hline w_{\neg \exists} & 1,1 & 0,0 & 0,0 \\
w_{\exists \neg \forall} & 0,0 & 1,1 & 0,0 \\
w_{\forall} & 0,0 & 0,0 & 1,1
\end{array}
$$

Interpretation games

- utility functions are identity matrices
- therefore the step multiply with utility matrix can be omitted in best response computation
- also, restriction to uniform priors makes simplifies computation of posterior distribution
- simplified IBR computation:

Interpretation games

Sally
(1) flip ρ along diagonal
(2) place a 0 in each cell that is non-maximal within its row
(3) normalize each row

Robin
(1) flip σ along diagonal
(2) if a row contains only 0 s , fill in a 1 in each cell corresponding to a true world-message association
(3) place a 0 in each cell that is non-maximal within its row
(9) normalize each row

Example: Quantity implicatures

σ_{0}	NO	SOME	ALL	ρ_{0}	$w_{\neg \exists}$	$w_{\exists \neg \forall}$	w_{\forall}
$w_{\checkmark \exists}$	1	0	0	NO	1	0	0
$w_{\exists \neg \forall}$	0	1	0	SOME	0	1	0
w_{\forall}	0	$\frac{1}{2}$	$\frac{1}{2}$	ALL	0	0	1
σ_{1}	NO	SOME	ALL	ρ_{1}	$w_{\neg \exists}$	$w_{\exists \neg \forall}$	w_{\forall}
$w_{\neg \exists}$	1	0	0	NO	1	0	0
$w_{\exists \neg \forall}$	0	1	0	SOME	0	1	0
w_{\forall}	0	0	1	ALL	0	0	1

In the fixed point, SOME is interpreted as entailing \neg ALL, i.e. exhaustively.

Lifted games

- So far, it is hard-wired in the model that Sally has complete knowledge (or, rather, complete belief - whether or not she is right is inessential for IBR) about the world she is in.
- corresponds to strong version of competence assumption
- Sometimes this assumption is too strong:

Lifted games

(1) a. Ann or Bert showed up. $(=\mathrm{OR})$
b. Ann showed up. $(=A)$
c. Bert showed up. $(=B)$
d. Ann and Bert showed up. (= AND)

Utility matrix

- w_{a} : Only Ann showed up.
- w_{b} : Only Bert showed up.
- $w_{a b}$: Both showed up.

	a_{a}	a_{b}	$a_{a b}$
w_{a}	1	0	0
w_{b}	0	1	0
$w_{a b}$	0	0	1

Lifted games

IBR sequence

σ_{0}	OR	A	B	AND			ρ_{0}	w_{a}	w_{b}
	$w_{a b}$								
w_{a}	$\frac{1}{2}$	$\frac{1}{2}$	0	0		OR	$\frac{1}{2}$	$\frac{1}{2}$	0
w_{b}	$\frac{1}{2}$	0	$\frac{1}{2}$	0		A	1	0	0
$w_{a b}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$		B	0	1	0
						AND	0	0	1
σ_{1}	OR	A	B	AND		ρ_{1}	w_{a}	w_{b}	$w_{a b}$
	0	1	0	0		OR	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
w_{a}	0			A	1	0	0		
w_{b}	0	0	1	0		B	0	1	0
$w_{a b}$	0	0	0	1		AND	0	0	1

OR comes out as a message that would never be used!

Lifted games

- full competence assumption is arguably too strong
- weaker assumption (Franke 2009):
- Sally's information states are partial answers to QUD, ie. sets of possible worlds
- Robin's task is to figure out which information state Sally is in.
- ceteris paribus, Robin receives slightly higher utility for smaller (more informative) states

Costs

- Preferences that are independent from correct information transmission are captured via cost functions for sender and receiver.
- For the sender this might be, inter alia, a preference for simpler expressions.
- For the receiver, the Strongest Meaning Hypothesis is a good candiate.

Lifted games

Formally

- cost functions $c_{s}, c_{r}: c_{s}:(P O W(W)-\{\emptyset\}) \times M \mapsto \mathbb{R}^{+}$
- costs are nominal:

$$
0 \leq c_{s}(i, m), c_{r}(i, m)<\min \left(\frac{1}{|P O W(W)-\emptyset|^{2}}, \frac{1}{|A L T(m)|^{2}}\right)
$$

- guarantees that cost considerations never get in the way of information transmission considerations
- new utility functions:

$$
\begin{aligned}
& u_{s}(i, m, a)=-c_{s}(i, m)+ \begin{cases}1 & \text { if } i=a, \\
0 & \text { else },\end{cases} \\
& u_{r}(i, m, a)=-c_{r}(a, m)+ \begin{cases}1 & \text { if } i=a, \\
0 & \text { else. }\end{cases}
\end{aligned}
$$

Modified IBR procecure

Sally

- flip ρ along the diagonal
- subtract c_{s}
- place a 0 in each cell that is non-maximal within its row
- normalize each row

Robin

- flip σ along diagonal
- if a row contains only 0 s ,
- fill in a 1 in each cell corresponding to a true world-message association
- else
- subtract c_{r}^{T}
- place a 0 in each cell that is non-maximal within its row
- normalize each row

The Strongest Meaning Hypothesis

- if in doubt, Robin will assume that Sally is competent
- captured in following cost function:

$$
\begin{array}{ll}
c_{r}(a, m)=\frac{|a|}{\max \left(|M|, 2^{|W|}\right)^{2}} \\
c_{r}\left(\left\{w_{a}\right\}, \cdot\right) & =\frac{1}{49} \quad c_{r}\left(\left\{w_{a}, w_{a b}\right\}, \cdot\right)=\frac{2}{49} \\
c_{r}\left(\left\{w_{b}\right\}, \cdot\right)=\frac{1}{49} \quad c_{r}\left(\left\{w_{b}, w_{a b}\right\}, \cdot\right)=\frac{2}{49} \\
c_{r}\left(\left\{w_{a b}\right\}, \cdot\right)=\frac{1}{49} \quad c_{r}\left(\left\{w_{a}, w_{b}, w_{a b}\right\}, \cdot\right)=\frac{3}{49} \\
c_{r}\left(\left\{w_{a}, w_{b}\right\}, \cdot\right)=\frac{2}{49}
\end{array}
$$

Lifted games

IBR sequence: 1

σ_{0}	OR	A	B	AND
$\left\{w_{a}\right\}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$\left\{w_{b}\right\}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0
$\left\{w_{a b}\right\}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$\left\{w_{a}, w_{b}\right\}$	1	0	0	0
$\left\{w_{a}, w_{a b}\right\}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$\left\{w_{b}, w_{a b}\right\}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0
$\left\{w_{a}, w_{b}, w_{a b}\right\}$	1	0	0	0

Lifted games

IBR sequence: flipping and subtracting costs

ρ_{0}	$\left\{w_{a}\right\}$	$\left\{w_{b}\right\}$	$\left\{w_{a b}\right\}$	$\left\{w_{a}, w_{b}\right\}$	$\left\{w_{a}, w_{a b}\right\}$	$\left\{w_{b}, w_{a b}\right\}$	$\left\{w_{a}, w_{b}, w_{a b}\right\}$
OR	0.48	0.48	0.23	$\mathbf{0 . 9 6}$	0.46	0.46	0.94
A	$\mathbf{0 . 4 8}$	-0.02	0.23	-0.04	0.46	-0.04	-0.06
B	-0.02	$\mathbf{0 . 4 8}$	0.23	-0.04	-0.04	0.46	-0.06
AND	-0.02	-0.02	$\mathbf{0 . 2 3}$	-0.04	-0.04	-0.04	-0.06

Lifted games

IBR sequence: 2

ρ_{0}	$\left\{w_{a}\right\}$	$\left\{w_{b}\right\}$	$\left\{w_{a b}\right\}$	$\left\{w_{a}, w_{b}\right\}$	$\left\{w_{a}, w_{a b}\right\}$	$\left\{w_{b}, w_{a b}\right\}$	$\left\{w_{a}, w_{b}, w_{a b}\right\}$
OR	0	0	0	1	0	0	0
A	1	0	0	0	0	0	0
B	0	1	0	0	0	0	0
AND	0	0	1	0	0	0	0

Lifted games

IBR sequence: 3

σ_{1}	OR	A	B	AND
$\left\{w_{a}\right\}$	0	1	0	0
$\left\{w_{b}\right\}$	0	0	1	0
$\left\{w_{a b}\right\}$	0	0	0	1
$\left\{w_{a}, w_{b}\right\}$	1	0	0	0
$\left\{w_{a}, w_{a b}\right\}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$\left\{w_{b}, w_{a b}\right\}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0
$\left\{w_{a}, w_{b}, w_{a b}\right\}$	1	0	0	0

Lifted games

- OR is only used in $\left\{w_{a}, w_{b}\right\}$ in the fixed point
- this means that it carries two implicatures:
- exhaustivity: Ann and Bert did not both show up
- ignorance: Sally does not know which one of the two disjuncts is true

Sender costs

(2) a. Ann or Bert or both showed up. ($=\mathrm{AB}-\mathrm{OR})$
b. Ann showed up. $(=A)$
c. Bert showed up. $(=B)$
d. Ann and Bert showed up. ($=$ AND)
e. Ann or Bert showed up. $(=\mathrm{OR})$
f. Ann or both showed up. $(=\mathrm{A}-\mathrm{OR})$
g. Bert or both showed up. (=B-OR)

- Message (e) is arguably more efficient for Sally than (a)
- Let us say that $c_{s}(\cdot, \mathrm{AB}-\mathrm{OR})=\frac{1}{50}, c_{s}(\cdot, \mathrm{~A}-\mathrm{OR})=c_{s}(\cdot, \mathrm{~B}-\mathrm{OR})=$ $\left.\frac{1}{75}, c_{s}(\cdot, \mathrm{OR})=c_{s}(\cdot, \mathrm{AND})=\frac{1}{100}\right)$, and $c_{s}(\cdot, \mathrm{~A})=c_{s}(\cdot, \mathrm{~B})=0$.

More ignorance implicatures

IBR sequence: 1

σ_{0}	AB-OR	A	B	AND	OR	A-OR	B-OR
$\left\{w_{a}\right\}$	$\frac{1}{4}$	$\frac{1}{4}$	0	0	$\frac{1}{4}$	$\frac{1}{4}$	0
$\left\{w_{b}\right\}$	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$
$\left\{w_{a b}\right\}$	$\frac{1}{7}$						
$\left\{w_{a}, w_{b}\right\}$	$\frac{1}{2}$	0	0	0	$\frac{1}{2}$	0	0
$\left\{w_{a}, w_{a b}\right\}$	$\frac{1}{4}$	$\frac{1}{4}$	0	0	$\frac{1}{4}$	$\frac{1}{4}$	0
$\left\{w_{b}, w_{a b}\right\}$	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$
$\left\{w_{a}, w_{b}, w_{a b}\right\}$	$\frac{1}{2}$	0	0	0	$\frac{1}{2}$	0	0

More ignorance implicatures

IBR sequence: 1

ρ_{0}	$\left\{w_{a}\right\}$	$\left\{w_{b}\right\}$	$\left\{w_{a b}\right\}$	$\left\{w_{a}, w_{b}\right\}$	$\left\{w_{a}, w_{a b}\right\}$	$\left\{w_{b}, w_{a b}\right\}$	$\left\{w_{a}, w_{b}, w_{a b}\right\}$
AB-OR	0	0	0	1	0	0	0
A	1	0	0	0	0	0	0
B	0	1	0	0	0	0	0
AND	0	0	1	0	0	0	0
OR	0	0	0	1	0	0	0
A-OR	1	0	0	0	0	0	0
B-OR	0	1	0	0	0	0	0

More ignorance implicatures

IBR sequence: 2

σ_{1}	AB-OR	A	B	AND	OR	A-OR	B-OR
$\left\{w_{a}\right\}$	0	1	0	0	0	0	0
$\left\{w_{b}\right\}$	0	0	1	0	0	0	0
$\left\{w_{a b}\right\}$	0	0	0	1	0	0	0
$\left\{w_{a}, w_{b}\right\}$	0	0	0	0	1	0	0
$\left\{w_{a}, w_{a b}\right\}$	0	1	0	0	0	0	0
$\left\{w_{b}, w_{a b}\right\}$	0	0	1	0	0	0	0
$\left\{w_{a}, w_{b}, w_{a b}\right\}$	0	0	0	0	1	0	0

More ignorance implicatures

IBR sequence: 2

ρ_{1}	$\left\{w_{a}\right\}$	$\left\{w_{b}\right\}$	$\left\{w_{a b}\right\}$	$\left\{w_{a}, w_{b}\right\}$	$\left\{w_{a}, w_{a b}\right\}$	$\left\{w_{b}, w_{a b}\right\}$	$\left\{w_{a}, w_{b}, w_{a b}\right\}$
ORBOTH	$\frac{1}{7}$						
A	1	0	0	0	0	0	0
B	0	1	0	0	0	0	0
AND	0	0	1	0	0	0	0
OR	0	0	0	1	0	0	0
A-OR	$\frac{1}{3}$	0	$\frac{1}{3}$	0	$\frac{1}{3}$	0	0
B-OR	0	$\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{1}{3}$	0

More ignorance implicatures

IBR sequence: 3

σ_{2}	AB-OR	A	B	AND	OR	A-OR	B-OR
$\left\{w_{a}\right\}$	0	1	0	0	0	0	0
$\left\{w_{b}\right\}$	0	0	1	0	0	0	0
$\left\{w_{a b}\right\}$	0	0	0	1	0	0	0
$\left\{w_{a}, w_{b}\right\}$	0	0	0	0	1	0	0
$\left\{w_{a}, w_{a b}\right\}$	0	0	0	0	0	1	0
$\left\{w_{b}, w_{a b}\right\}$	0	0	0	0	0	0	1
$\left\{w_{a}, w_{b}, w_{a b}\right\}$	1	0	0	0	0	0	0

More ignorance implicatures

IBR sequence: 3

ρ_{2}	$\left\{w_{a}\right\}$	$\left\{w_{b}\right\}$	$\left\{w_{a b}\right\}$	$\left\{w_{a}, w_{b}\right\}$	$\left\{w_{a}, w_{a b}\right\}$	$\left\{w_{b}, w_{a b}\right\}$	$\left\{w_{a}, w_{b}, w_{a b}\right\}$
ORBOTH	0	0	0	0	0	0	1
A	1	0	0	0	0	0	0
B	0	1	0	0	0	0	0
AND	0	0	1	0	0	0	0
OR	0	0	0	1	0	0	0
A-OR	0	0	0	0	1	0	0
B-OR	0	0	0	0	0	1	0

I-implicatures

(2) a. John opened the door. (= OPEN)
b. John opened the door using the handle. (= OPEN-H)
c. John opened the door with an axe. (= OPEN-A)
formally

- $W=\left\{w_{h}, w_{a}\right\}$
- $p^{*}\left(w_{1}\right)=\frac{2}{3}, p^{*}\left(w_{2}\right)=\frac{1}{3}$
- $\|$ OPEN-H $\left\|=\left\{w_{h}\right\},\right\|$ OPEN-A $\|=\left\{w_{a}\right\}$,

	a_{h}	a_{a}
w_{h}	1,1	0,0
w_{a}	0,0	1,1

- $c\left(m_{1}\right)=c\left(m_{2}\right) \in \frac{1}{20}, c\left(m_{3}\right)=0$

I-implicatures

σ_{0}	OPEN	OPEN-H	OPEN-A	ρ_{0}	w_{h}	w_{a}
$\begin{aligned} & w_{h} \\ & w_{a} \end{aligned}$	$\frac{1}{2}$	$\frac{1}{2}$	0	OPEN OPEN-H OPEN-A	110	001
	2	2				
	$\frac{1}{2}$	0	$\frac{1}{2}$			
σ_{1}	OPEN	OPEN-H	OPEN-A	ρ_{1}	w_{h}	w_{a}
$\begin{aligned} & w_{h} \\ & w_{a} \end{aligned}$	0	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	OPEN	1	0
				OPEN-H	1	0
				OPEN-A	0	1

Measure terms

Krifka $(2002,2007)$ notes that measure terms can be used in a precise or in a vague way, and that more complex expressions are less likely to be used in a vague way. Here is a schematic analysis:

- $w_{1}, w_{3}: 100$ meter, $w_{2}, w_{4}: 101$ meter
- m_{100} : "one hundred meter" m_{101} : "one hundred and one meter" $m_{e x 100}$: "exactly one hundred meter"
- $\left\|m_{100}\right\|=\left\|m_{e x 100}\right\|=\left\{w_{1}, w_{3}\right\}$, $\left\|m_{101}\right\|=\left\{w_{2}, w_{4}\right\}$
- $c\left(m_{100}\right)=0$, $c\left(m_{101}\right)=c\left(m_{e x 100}\right)=0.15$
- $a_{1}, a_{3}: 100, a_{2}, a_{4}: 101$
- in w_{1}, w_{2} precision is important
- in w_{3}, w_{4} precision is not important

a_{1}	a_{2}	a_{3}	a_{4}

w_{1}	1	0.5	1	0.5
w_{2}	0.5	1	0.5	1
w_{3}	1	0.9	1	0.9
w_{4}	0.9	1	0.9	1

Measure terms

σ_{0}	m_{100}	m_{101}	$m_{e x 100}$
w_{1}	$\frac{1}{2}$	0	$\frac{1}{2}$
w_{2}	0	1	0
w_{3}	$\frac{1}{2}$	0	$\frac{1}{2}$
w_{4}	0	1	0

ρ_{0}	a_{1}	a_{2}	a_{3}	a_{4}
m_{100}	$\frac{1}{2}$	0	$\frac{1}{2}$	0
m_{101}	0	$\frac{1}{2}$	0	$\frac{1}{2}$
$m_{e x 100}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0

σ_{1}	m_{100}	m_{101}	$m_{e x 100}$
w_{1}	1	0	0
w_{2}	0	1	0
w_{3}	1	0	0
w_{4}	1	0	0

ρ_{1}	a_{1}	a_{2}	a_{3}	a_{4}
m_{100}	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$
m_{101}	0	1	0	0
$m_{e x 100}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0

σ_{2}	m_{100}	m_{101}	$m_{\text {ex } 100}$
w_{1}	0	0	1
w_{2}	0	1	0
w_{3}	1	0	0
w_{4}	1	0	0

ρ_{2}	a_{1}	$w a_{2}$	a_{3}	a_{4}
m_{100}	0	0	$\frac{1}{2}$	$\frac{1}{2}$
m_{101}	0	1	0	0
$m_{e x 100}$	1	0	0	0

M-implicatures

(3) a. John stopped the car. (= STOP)
b. John made the car stop. (= MAKE-STOP)

- w_{1} : John used the foot brake.
- w_{2} : John drove the car against a wall.
- $\|$ STOP $\|=$
$\|$ MAKE-STOP $\|=$
$\left\{w_{1}, w_{2}\right\}$
- $c($ STOP $)=0$;
$c($ MAKE-STOP $=0.1$
- $p^{*}\left(w_{1}\right)=.8$;
$p^{*}\left(w_{2}\right)=.2$.

Utility matrix

	a_{1}	a_{2}
w_{1}	1	0
w_{2}	0	1

M-implicatures

IBR sequence

σ_{0}	STOP	MAKE-STOP	ρ_{0}	a_{1}	a_{2}
w_{1}	$\frac{1}{2}$	$\frac{1}{2}$	STOP	1	0
w_{2}	$\frac{1}{2}$	$\frac{1}{2}$	MAKE-STOP	1	0
σ_{1}	STOP	MAKE-STOP	ρ_{1}	a_{1}	a_{2}
w_{1}	1	0	STOP	1	0
w_{2}	1	0	MAKE-STOP	$\frac{1}{2}$	$\frac{1}{2}$
σ_{2}	STOP	MAKE-STOP	ρ_{2}	a_{1}	a_{2}
w_{1}	1	0	STOP	1	0
w_{2}	0	1	MAKE-STOP	0	1

