Semantics 1

May 8, 2012

Gerhard Jäger

Compositionality

- sentence meaning $=$ lexical meaning + syntax
- example:

Peter listens.

- sentence meaning: λs.Peter listens in s
- lexical meanings:
- $\|$ Peter $\|=$ Peter
- $\|$ listens $\|=\lambda x \lambda s . x$ listens in s
- syntax: [S [NP [N Peter]] [VP [V listens]]]

Compositionality

Compositionality

- So far, we used English + some lambda notation as meta language.
- Predicate logic is more precise than English; therefore it is to be preferred as meta language.
- note: all predicates have an additional argument for situations. (This is different from the translations you used in your logics class.)

Compositionality

- meaning of the mother node can be computed from the meanings of the daughter nodes:
- for non-branching nodes, mother node and daughter node have the same meaning
- in an NP-VP structure, the meaning of the VP (which is a function) is applied to the meaning of the NP
- Assumption: this correspondence between syntax and semantics holds for all English sentences. (The correct syntax of English is of course much more complex, but I try to keep things simple for expository purposes.)

Compositionality

- formally: for each syntactic rule, there is a corresponding semantic rule
- so far, we have
- $S \rightarrow N P, V P::\|S\|=\|V P\|(\|N P\|)$
- $N P \rightarrow N::\|N P\|=\|N\|$
- $V P \rightarrow V::\|V P\|=\|V\|$

Compositionality

Schönfinkeling (a.k.a. Currying)

- meaning of transitive verb: two-place relation
- e.g.: loves $\leadsto\left\{\langle x, y\rangle \mid \operatorname{LOVE}^{\prime}(x, y)\right\}^{1}$
- expression as characteristic function:

$$
\lambda\langle x, y\rangle \in E \times E \cdot \operatorname{LovE}^{\prime}(x, y)
$$

- lambda conversion:

$$
\left(\lambda\langle x, y\rangle \in E \times E \cdot \operatorname{LOVE}^{\prime}(x, y)\right)(\langle a, h\rangle)=\operatorname{LOVE}^{\prime}(a, h)
$$

${ }^{1}$ We ignore situation dependence for a moment.

Compositionality

Schönfinkeling

- What is the meaning of loves John? The set of individuals that love John.

$$
\| \text { loves John } \|=\left\{x \mid \operatorname{LOVE}^{\prime}(x, j)\right\} \approx \lambda x \cdot \operatorname{LOVE}^{\prime}(x, j)
$$

- loves can also be considered as a function that maps the meaning of α to the meaning of loves α :

$$
\| \text { loves } \|=\lambda y \lambda x \cdot \operatorname{LOVE}^{\prime}(x, y)
$$

Compositionality

Schönfinkeling

- two-place relation $\left\{\langle x, y\rangle \mid \operatorname{LOVE}^{\prime}(x, y)\right\}$ is transformed into two-place characteristic function $\lambda\langle x, y\rangle$. LOVE' (x, y), which, in turn, can be transformed into a one-place function with a one-place characteristic function as its value:

$$
\lambda y \lambda x \cdot \operatorname{LOVE}^{\prime}(x, y)
$$

- general recipe:

$$
\{\langle x, y\rangle \mid R(x, y)\} \leadsto \lambda\langle x, y\rangle . R(x, y) \leadsto \lambda y \lambda x . R(x, y)
$$

- same principle also applies to n-ary relations:

$$
\left\{\left\langle x_{1}, \cdots, x_{n}\right\rangle \mid S\left(x_{1}, \cdots, x_{n}\right)\right\} \leadsto \lambda x_{n} . \cdots . \lambda x_{1} \cdot S\left(x_{1}, \cdots, x_{n}\right)
$$

Note: Order of the variables in the λ-prefix is mirror image of their order within the argument frame of the relation!

Transitive Verbs

- examples: love, know, see, help, ...
- express two-place relations between individuals
- if situation dependence is added, we get three-place relations
- $\|$ Mary sees $\operatorname{Anna\| }=\lambda s . \operatorname{SEE}^{\prime}\left(s, \mathrm{~m}^{\prime}, \mathrm{A}^{\prime}\right)$
- $\|$ sees $\|=\lambda y \lambda x \lambda s . \operatorname{SEE}^{\prime}(s, x, y)$

Transitive Verbs

Rules:

- $S \rightarrow N P, V P::$ $\|S\|=\|V P\|(\|N P\|)$
- $N P \rightarrow N::$
$\|N P\|=\|N\|$
- $V P \rightarrow V:$:
$\|V P\|=\|V\|$
- $V P \rightarrow V, N P::$
$\|V P\|=\|V\|(\|N P\|)$

Boolean Operators

The compositional analysis of the Boolean operators can also be expressed in this format:

Negation

- Logical operator of negation can be expressed in two ways in English:
- It is not the case that Peter listens.
- Peter doesn't listen.
- in both cases, the semantic effect is set complementation:

$$
\| \text { Peter does not listen } \|=\lambda s . \neg \operatorname{LISTEN}^{\prime}(s, p)
$$

Boolean Operators

Negation

- New rules:
- $S_{1} \rightarrow N e g O, S_{2}::\left\|S_{1}\right\|=\|N e g O\|\left(\left\|S_{2}\right\|\right) \|$
- $V P_{1} \rightarrow N e g I, V P_{2}::\left\|V P_{1}\right\|=\|N e g I\|\left(\left\|V P_{2}\right\|\right) \|$
- Neg $O \rightarrow$ It is not the case that $::\|N e g O\|=\lambda p \lambda s . \neg p(s)$
- NegI \rightarrow doesn't $::\|N e g I\|=\lambda P \lambda x \lambda s . \neg P(x, s)$

Boolean Operatoren

Negation

Boolean Operatoren

Negation

Boolean Operatoren

Sentence Coordination

- Rules:
- $S_{1} \rightarrow S_{2}$, Coor $S, S_{3}::\left\|S_{1}\right\|=\|\operatorname{Coor} S\|\left(\left\|S_{2}\right\|\right)\left(\left\|S_{3}\right\|\right)$
- Coor $S \rightarrow$ and $:: \lambda p \lambda q . p \cap q$
- Coor $S \rightarrow$ or $:: ~ \lambda p \lambda q . p \cup q$
- Note:

$$
\begin{aligned}
\lambda s . \phi \cap \lambda s . \psi & =\lambda s .(\phi \wedge \psi) \\
\lambda s . \phi \cup \lambda s . \psi & =\lambda s .(\phi \vee \psi)
\end{aligned}
$$

Boolean Operatoren

Sentence coordination

Boolean Operatoren

VP coordination

- Coordination may conjoin two VPs
- Peter sleeps and snores.
- John walks and talks.
- syntactic structure:

- semantics: similar to sentence operators Peter sleeps and snores \Leftrightarrow Peter sleeps and Peter snores.

Boolean Operators

VP coordination

- Rules:
- $V P_{1} \rightarrow V P_{2}, \operatorname{Coor} V P, V P_{3}::\left\|V P_{1}\right\|=\|\operatorname{Coor} V P\|\left(\left\|V P_{2}\right\|\right)\left(\left\|V P_{3}\right\|\right)$
- CoorV $P \rightarrow$ and $:: ~ \lambda P \lambda Q \lambda x \lambda s . P(x)(s) \wedge Q(x)(s)$
- CoorVP \rightarrow or $:: ~ \lambda P \lambda Q \lambda x \lambda s . P(x)(s) \vee Q(x)(s)$

Boolsche Operatoren

VP coordination

