Semantics 1 J

May 8, 2012

Gerhard Jager

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

(May 8, 2012) Semantics 1 Gerhard Jager 1/20

I
Compositionality

@ sentence meaning = lexical meaning + syntax

@ example:
Peter listens.
@ sentence meaning: As.Peter listens in s
@ lexical meanings:
@ ||Peter|| = Peter
@ ||listens|| = AzAs.x listens in s

o syntax: [s [np [v Peter]] [yp [v listens]]]

(May 8, 2012) Semantics 1 Gerhard Jager 2 /20

I
Compositionality

S:\s.Peter listens in s

/\

NP:Peter VP:\xz\s.z listens in s

N:Peter V:\z)s.x listens in s
Peter listens

(May 8, 2012) Semantics 1 Gerhard Jager 3 /20

I
Compositionality

@ So far, we used English + some lambda notation as meta language.

@ Predicate logic is more precise than English; therefore it is to be
preferred as meta language.

@ note: all predicates have an additional argument for situations. (This
is different from the translations you used in your logics class.)

S:\s.LISTEN’ (s, P’)

/\

NP:p* VP:AzAs.LISTEN'(s, x)

N:p’ V:AzAs.LISTEN’ (s, 7)
Peter listens

(May 8, 2012) Semantics 1 Gerhard Jager 4 /20

I
Compositionality

@ meaning of the mother node can be computed from the meanings of
the daughter nodes:

@ for non-branching nodes, mother node and daughter node have the
Same meaning
@ in an NP-VP structure, the meaning of the VP (which is a function) is
applied to the meaning of the NP
@ Assumption: this correspondence between syntax and semantics holds
for all English sentences. (The correct syntax of English is of course
much more complex, but | try to keep things simple for expository
purposes.)

(May 8, 2012) Semantics 1 Gerhard Jager 5 /20

I ——
Compositionality

o formally: for each syntactic rule, there is a corresponding semantic
rule
@ so far, we have

o S—= NP, VP S| =[VP|([NP])
o NP> N |[NP| = |N||
s VPV VP =V

May 8, 2012 Semantics 1 Gerhard Jager 6 /20
y

I
Compositionality

Schonfinkeling (a.k.a. Currying)
@ meaning of transitive verb: two-place relation
e eg.: loves ~ {(x,y)|LOVE'(z,y)}

@ expression as characteristic function:
Xz,y) € E x E.LOVE (x,y)
@ lambda conversion:

(Mz,y) € E x E.LOVE'(z,y))({a,h)) = LOVE(a,h)

'We ignore situation dependence for a moment.

(May 8, 2012) Semantics 1 Gerhard Jager 7 /20

I
Compositionality

Schonfinkeling

@ What is the meaning of loves John? The set of individuals that love
John.

||loves John|| = {z|LOVE’(z, j)} ~ A\x.LOVE’(z, j)

@ Joves can also be considered as a function that maps the meaning of
« to the meaning of loves a:

||loves|| = AyAx.LOVE’(x,y)

(May 8, 2012) Semantics 1 Gerhard Jager 8 /20

I
Compositionality

Schonfinkeling

@ two-place relation {(x,y)|LOVE’(z,y)} is transformed into two-place
characteristic function A(z, y).LOVE’(x, y), which, in turn, can be
transformed into a one-place function with a one-place characteristic
function as its value:

AYAZ.LOVE’(x,y)

@ general recipe:
{(z,9)|R(z,y)} ~ Mz, y). R(x, y) ~ AyAe.R(z, y)
@ same principle also applies to n-ary relations:
{{z1,)| S(x1, - y2n))~ Az - Az.S(xg, -+, x)

Note: Order of the variables in the A-prefix is mirror image of their order
within the argument frame of the relation!

(May 8, 2012) Semantics 1 Gerhard Jager 9 /20

e
Transitive Verbs

examples: love, know, see, help, ...
express two-place relations between individuals
if situation dependence is added, we get three-place relations

||[Mary sees Annal| = A\s.SEE’(s,M’,A”)

|Isees|| = AyAzAs.SEE’(s, x,y)

(May 8, 2012) Semantics 1 Gerhard Jager 10 / 20

e
Transitive Verbs

S:\s.SEE’(s,M’, A7)

/\

NP:m’ VP:AzAs.SEE (s, 2, a)

N:wm? V:AyAzAs.SEE (s, z,y) NP:A’

Mary sees ‘
N:a’
Anna

(May 8, 2012) Semantics 1

Rules:

e S— NPVP
1] = [VPII(INP)

@ NP — N ::
INP| = [|N]|

e VP -V
VP =V

o VP —V NP ::
VP = V(NP

Gerhard Jager 11 /20

Boolean Operators

The compositional analysis of the Boolean operators can also be expressed
in this format:

Negation

@ Logical operator of negation can be expressed in two ways in English:
o It is not the case that Peter listens.
@ Peter doesn't listen.

@ in both cases, the semantic effect is set complementation:

|| Peter does not listen|| = As.—LISTEN’(s, p)

(May 8, 2012) Semantics 1 Gerhard Jager 12 /20

I ——
Boolean Operators

Negation
@ New rules:
o 51 = NegO, S |51 = [NegO||([|S2]])]]
@ VP, — Negl, VP, ||VP | = ||[NegI||(||[VP])|
@ NegO — It is not the case that :: |[NegO| = ApAs.—p(s)
o Negl — doesn't :: ||Negl|| = APAxAs.—P(x,s)

(May 8, 2012) Semantics 1 Gerhard Jager 13 /20

I ——
Boolean Operatoren

Negation S::\s.SLISTEN’ (s, P’)
NegO::ApAs.—p(s) S::As.LISTEN’(s, P’)
It is not NP VP
the case that p’ ATAS.LISTEN’ (s,)
N V
p’ AZAS.LISTEN (s, x)
Peter listens

(May 8, 2012) Semantics 1 Gerhard Jager 14 /20

I ——
Boolean Operatoren

Negation S::\s.SLISTEN’ (s, P’)
NP::p’ VP::A\xAs.—LISTEN’(Ss, =)
Peter /\
Negl VP
APz As.—P(s,x) ATAS.LISTEN’ (s,)
doesn't ‘
V
AZAS.LISTEN (s, x)
listen

(May 8, 2012) Semantics 1 Gerhard Jager 15 / 20

I ——
Boolean Operatoren

Sentence Coordination
@ Rules:
e 51— Sy,CoorS, S3 = ||S1]] = ||CoorS||(||S21)(]|:53]])
o CoorS — and :: \pAq.pNyq
@ CoorS — or:: ApAg.pUgq

@ Note:

As.dNAsp = As.(pAY)
As.pUAsp = As.(p V)

(May 8, 2012) Semantics 1 Gerhard Jager 16 / 20

I ——
Boolean Operatoren

Sentence coordination

S
As.(LISTEN’(s,M’) A SNORE’(s, "))

S CoorS S
AS.LISTEN’(s,M’) ApAg.pNgq AS.SNORE’(s, 1)

Mary listens John snores

(May 8, 2012) Semantics 1 Gerhard Jager 17 /20

I ——
Boolean Operatoren

VP coordination
@ Coordination may conjoin two VPs

o Peter sleeps and snores.
@ John walks and talks.

@ syntactic structure:

N

NP VP

T

VP CoorVP VP

@ semantics: similar to sentence operators
Peter sleeps and snores < Peter sleeps and Peter snores.

(May 8, 2012) Semantics 1 Gerhard Jager 18 / 20

I ——
Boolean Operators

VP coordination
@ Rules:

9 VP, — VP, CoorVP,VPs:: |[VPi| = |[CoorVP|(||]VP:)(||VPs])
@ CoorVP — and :: AP AQA\xAs.P(z)(s) A Q(z)(s)
@ CoorVP — or:: APAQAxAs.P(z)(s) V Q(z)(s)

(May 8, 2012) Semantics 1 Gerhard Jager 19 /20

I ——
Boolsche Operatoren

VP coordination

S
ASs.SLEEP’(s,H’) A SNORE’(s, H’)

/”I/\

NP VP
H’ AzAs.SLEEP’(s,) A SNORE’(s, x)
| T
N VP CoorVP VP
u’ AZAS.SLEEP’(s,2) APAQAzAs.P(z)(s) A Q(x)(s) AxzAs.SNORE’(s,)
Hans ‘ ‘ ‘
\Y and \Y
AZ\S.SLEEP (s, x) AZAS.SNORE’(s, x)
sleeps snores

(May 8, 2012) Semantics 1 Gerhard Jager 20 / 20

