Semantics 1

May 15, 2012

Gerhard Jäger

Quantifiers

Determiniers

- Meaning of a determiner is 3-place relation between
- a situation,
- two relations between situations and individuals, i.e., the meanings of the NP and the VP respectively
- "logical" determiners:
- a, some: $\lambda P \lambda Q \lambda s \exists x(P(s, x) \wedge Q(s, x))$
- every, all: $\lambda P \lambda Q \lambda s \forall x(P(s, x) \rightarrow Q(s, x))$
- no: $\lambda P \lambda Q \lambda s \neg \exists x(P(s, x) \wedge Q(s, x))$

Quantifiers

Determiner

Quantifiers

Determiner

Quantifiers

Determiner

Quantifiers

Determiners beyond predicate logic

- equivalent notation of the determiners used so far: ${ }^{1}$
- every: $\lambda P \lambda Q \lambda s .(\{x \mid P(s, x)\} \subseteq\{x \mid Q(s, x)\})$
- a: $\lambda P \lambda Q \lambda s .(\{x \mid P(s, x)\} \cap\{x \mid Q(s, x)\} \neq \emptyset)$
- no: $\lambda P \lambda Q \lambda s .(\{x \mid P(s, x)\} \cap\{x \mid Q(s, x)\}=\emptyset)$
- basically, a determiner expresses a 2-place relation between two sets $(\{x \mid P(s, x)\}$ and $\{x \mid Q(s, x)\})$
- similar patterns holds for all determiners:

[^0]
Quantifiers

Determiners beyond predicate logic

- two: $\lambda P \lambda Q \lambda s$. $|\{x \mid P(s, x)\} \cap\{x \mid Q(s, x)\}| \geq 2$
- at most two: $\lambda P \lambda Q \lambda s .|\{x \mid P(s, x)\} \cap\{x \mid Q(s, x)\}| \leq 2$
- exactly two: $\lambda P \lambda Q \lambda s$. $|\{x \mid P(s, x)\} \cap\{x \mid Q(s, x)\}|=2$
- most:

$$
\lambda P \lambda Q \lambda s .|\{x \mid P(s, x)\} \cap \lambda x . P(s, x)|>|\{x \mid P(s, x)\}-\{x \mid Q(s, x)\}|
$$

${ }^{1}|A|$ is the cardinality of the set A, i.e., the number of its elements.

Quantifiers

Quantifier Raising

- quantifiers in object position are not interpretable with our current machinery

- both $N P$ and $V P$ denote functions
- domain of $\|$ a book\|: two-place relation
- ||read|| is three-place relation
- domain of $\|$ read $\|$: individuals
- ||a book\| is not an individual, but a relation

Quantifiers

Quantifier Raising

- solution: (one of several possible solutions):
- syntax tree is modified before compisitional interpretation starts
- original syntactic structure: S-structure
- derived syntactic structure for semantic interpretation: Logical Form (LF)
- transition from S-structure to LF is governed by transformation rules

Quantifiers

Excursus: pronouns and variables

- so far, interpretation is always uniquely determined: $\|\alpha\|$ has a unique value
- some expressions, such as pronouns, are context dependent He sleeps.
- comparable to variables in predicate logic
- different occurrences of a pronoun need not be co-referent
He sees him.
- desambiguation via indices

$$
\mathrm{He}_{i} \text { sees } \mathrm{him}_{j} .
$$

- indices are natural numbers; equal letters represent equal numbers and different letter for different numbers

Quantifiers

Excursus: Pronomen und Variable

- interpretation rule for pronouns

$$
\left\|h e_{i}\right\|=x_{i}
$$

$$
\| \text { he }_{i} \text { sees } \operatorname{him}_{j} \|=\lambda s . \operatorname{SEE}^{\prime}\left(s, x_{i}, x_{j}\right)
$$

Quantifiers

Quantifier Raising

- transformation rule "Quantifier Raising":
(1) replace the $N P$-node α of a generalized quantifier by $N P_{i}$
(2) replace some S-node β that dominates α in S -structure by the configuration $\left.{ }_{[S} \alpha_{i} \beta\right]$

- the lower $N P$-node is informally called "trace" and the transformation itself "movement" (should be familiar from Syntax 0/Syntax 1)
- sometimes traces are marked by t

Quantifiers

Quantifier Raising

- interpretation of LF
- If a node $N P_{i}$ is a leaf (i.e., it is a trace):

$$
\left\|N P_{i}\right\|=x_{i}
$$

- If $\left[{ }_{S_{1}} N P_{i} \quad S_{2}\right]$ is a configuration that results from Quantifier Raising:

$$
\left\|S_{1}\right\|=\|N P\|\left(\lambda x_{i} \cdot\left\|S_{2}\right\|\right)
$$

- Note: This rule is an exception to the principle of type-driven interpretation.

Quantifiers

Quantifier Raising

Multiple quantification

- A single sentence may contain more than one quantifier:
- Every child bought a cookie.
- Every referee shows some team two red cards.
- for n quantifiers, we have n ! many different ways to perform QR
- up to n ! different readings
- simple example

Every man loves a woman.

Multiple quantification

S-structure:

object raising:

subject raising (= LF 1):

Multiple quantification

S-structure:

subject raising:

object raising (= LF 2):

Multiple quantification

Interpretation of LF1:

Multiple quantification

Interpretation of LF2:

[^0]: ${ }^{1}$ Note that our meta-language is a mixture of predicate logic and set theory.

