Semantics 1

May 24, 2012

Gerhard Jäger

The copula verb be

Different uses of be
(1) Tully is Cicero. \leadsto predicative is proper noun
(2) Cicero is a politician. \leadsto predicative is indefinite NP
(3) Cicero is in Rome. \leadsto predicative is PP
(4) Cicero is old. \leadsto predicative is AP

Equative be

(1) Tully is Cicero.

Cicero

Equative be

Equative be also accounts for quantifiers in predicative position.
(1) Tully is a philosopher.

$\lambda s . \exists x\left(\right.$ PHILOSOPHER $\left.^{\prime}(s, x) \wedge \mathrm{T}^{\prime}=x\right) \equiv \lambda s . \operatorname{PHILOSOPHER}{ }^{\prime}\left(s, \mathrm{~T}^{\prime}\right)$

Predicative be

(1) Tully is old.

$$
\text { is } \leadsto \lambda P \lambda x \lambda s . P(s, x)
$$

Predicative and attributive use of adjectives

- predicative use:
(1) Tully is old. $\sim \lambda s$.OLD $^{\prime}\left(s, T^{\prime}\right)$
- attributive use:
(2) old man $\sim \lambda x \lambda s$. MAN $^{\prime}(s, x) \wedge$ OLD $^{\prime}(s, x)$
- attributive use involves logical conjunction \wedge that is missing in predicative use
- Where does this semantic content come from?

The syntactic solution

- Syntax: $\mathrm{NP}_{1} \rightarrow \mathrm{AP}, \mathrm{NP}_{2}$
- Semantics: $\left\|\mathrm{NP}_{1}\right\|=\lambda x \lambda s .\left\|\mathrm{NP}_{2}\right\|(s, x) \wedge\|\mathrm{AP}\|(s, x)$
- Disadvantage:
- does not work for all attributive adjectives:
(1) fake doctor
(2) alleged winner
(3) imaginary singers

The lexical solution

Lexical rule
If the lexicon contains an adjective A with the meaning

$$
\lambda \vec{y} \lambda x \lambda s . \alpha(s, x)
$$

for some predicate α, then the lexicon also contains an adjective A with the meaning

$$
\lambda \vec{y} \lambda P \lambda x \lambda s . P(s, x) \wedge \alpha(s, x, \vec{y})
$$

There is no consensus which solution is correct. In this course we will work with the lexical solution.

[^0]
Prepositions

- Just like APs, PPs have a predicative and a attributive use (plus an adverbial use, that will not be covered here)
- same systematic relationship between predicative and attributive use as above:
- $\mathrm{in}_{\text {pred }} \leadsto \lambda y \lambda x \lambda s$.IN $^{\prime}(s, x, y)$
- $\mathrm{in}_{\text {attr }} \leadsto \lambda y \lambda P \lambda x \lambda s . P(s, x) \wedge \mathrm{IN}^{\prime}(s, x, y)$

Predicative use

Attributive use

Inverse linking

(1) A pub in every city opened. \leadsto

$$
\lambda s . \forall y\left(\operatorname{CITY}^{\prime}(s, y) \rightarrow \exists x\left(\operatorname{PUB}^{\prime}(s, x) \wedge \mathrm{IN}^{\prime}(s, x, y) \wedge \operatorname{OPEN}^{\prime}(s, x)\right)\right)
$$

Inverse linking

- if we do QR in the reverse order...

- NP_{1} (every city) ends up not c-commanding its trace \Rightarrow illicit movement!
- semantics would come out as
$\lambda s . \exists x\left(\right.$ PUB' $(s, x) \wedge \operatorname{IN}^{\prime}\left(s, x, x_{1}\right) \wedge \forall y\left(\operatorname{CITY}^{\prime}(s, y) \rightarrow\right.$ OPEN $\left.\left.^{\prime}(s, x)\right)\right)$
- unbound variable (corresponds to non-c-commanded trace)

Inverse Linking

(1) Some pub in every town offers every beer.

S-Structure

Inverse linking

LF 1/2/3

Inverse Linking

(1) Some pub in every town offers every beer.

- with our current tools, we can derive three readings:
- $\lambda s . \forall z\left(\right.$ BEER' $^{\prime}(s, z) \rightarrow \forall y\left(\right.$ TOWN $^{\prime}(s, y) \rightarrow$ $\exists x\left(\operatorname{PUB}^{\prime}(s, x) \wedge \mathrm{IN}^{\prime}(s, x, y) \wedge\right.$ OFFER' $\left.\left.\left.^{\prime}(s, x, z)\right)\right)\right)$
- $\lambda s . \forall y\left(\right.$ TOWN $^{\prime}(s, y) \rightarrow \forall z\left(\right.$ BEER' $^{\prime}(s, z) \rightarrow$ $\exists x\left(\right.$ PUB $^{\prime}(s, x) \wedge \mathrm{IN}^{\prime}(s, x, y) \wedge$ OFFER $\left.\left.\left.^{\prime}(s, x, z)\right)\right)\right)$
- $\lambda s . \forall y\left(\mathrm{TOWN}^{\prime}(s, y) \rightarrow \exists x\left(\mathrm{PUB}^{\prime}(s, x) \wedge \mathrm{IN}^{\prime}(s, x, y) \wedge \forall z\left(\operatorname{BEER}^{\prime}(s, z) \rightarrow\right.\right.\right.$ OFFER' $(s, x, z)))$)
- two more readings are possible but cannot be derived so far:
- $\lambda s . \forall z\left(\operatorname{BEER}^{\prime}(s, z) \rightarrow \exists x\left(\right.\right.$ PUB' $^{\prime}(s, x) \wedge \forall y\left(\right.$ TOWN $^{\prime}(s, y) \rightarrow$ $\left.\left.\left.\mathrm{IN}^{\prime}(s, x, y)\right) \wedge \operatorname{OFFER}^{\prime}(s, x, z)\right)\right)$
- $\lambda s . \exists x\left(\right.$ PUB $^{\prime}(s, x) \wedge \forall y\left(\right.$ TOWN $\left.^{\prime}(s, y) \rightarrow \operatorname{IN}^{\prime}(s, x, y)\right) \wedge \forall z\left(\operatorname{BEER}^{\prime}(s, z) \rightarrow\right.$ OFFER' $(s, x, z))$)

[^0]: ${ }^{0}$ (The notation \vec{y} represents a (possibly empty) sequence of additional arguments.)

