Semantics 1

May 24, 2012

Gerhard Jäger

(May 24, 2012)

Semantics 1

Gerhard Jäger 1 / 16

Different uses of be

- (1) Tully is Cicero. \rightsquigarrow predicative is proper noun
- (2) Cicero is a politician. \rightsquigarrow predicative is indefinite NP
- (3) Cicero is in Rome. \rightsquigarrow predicative is PP
- (4) Cicero is old. \rightsquigarrow predicative is AP

Equative be

Equative be

Equative be also accounts for quantifiers in predicative position. (1) Tully is a philosopher.

 $\lambda s. \exists x (\text{PHILOSOPHER}'(s, x) \land \mathbf{T}' = x) \equiv \lambda s. \text{PHILOSOPHER}'(s, \mathbf{T}')$

Predicative be

Predicative and attributive use of adjectives

- predicative use:
 - (1) Tully is old. $\rightsquigarrow \lambda s.OLD'(s,T')$
- attributive use:

(2) old man $\rightsquigarrow \lambda x \lambda s. MAN'(s, x) \land OLD'(s, x)$

- \bullet attributive use involves logical conjunction \wedge that is missing in predicative use
- Where does this semantic content come from?

The syntactic solution

- Syntax: $NP_1 \rightarrow AP, NP_2$
- Semantics: $\|NP_1\| = \lambda x \lambda s. \|NP_2\|(s, x) \wedge \|AP\|(s, x)$
- Disadvantage:
 - does not work for all attributive adjectives:
 - (1) fake doctor
 - (2) alleged winner
 - (3) imaginary singers

Lexical rule

If the lexicon contains an adjective \boldsymbol{A} with the meaning

 $\lambda \vec{y} \lambda x \lambda s. \alpha(s, x)$

for some predicate $\alpha,$ then the lexicon also contains an adjective A with the meaning

 $\lambda \vec{y} \lambda P \lambda x \lambda s. P(s, x) \land \alpha(s, x, \vec{y})$

There is no consensus which solution is correct. In this course we will work with the lexical solution.

⁰(The notation \vec{y} represents a (possibly empty) sequence of additional arguments.)

Prepositions

- Just like APs, PPs have a predicative and a attributive use (plus an adverbial use, that will not be covered here)
- same systematic relationship between predicative and attributive use as above:
 - $\operatorname{in}_{\operatorname{pred}} \rightsquigarrow \lambda y \lambda x \lambda s. \operatorname{IN}'(s, x, y)$
 - $\operatorname{in}_{\operatorname{attr}} \rightsquigarrow \lambda y \lambda P \lambda x \lambda s. P(s, x) \wedge \operatorname{in'}(s, x, y)$

Predicative use

Inverse linking

(1) A pub in every city opened. $\rightsquigarrow \lambda s. \forall y (\text{CITY}'(s, y) \rightarrow \exists x (\text{PUB}'(s, x) \land \text{IN}'(s, x, y) \land \text{OPEN}'(s, x)))$

Inverse linking

• if we do QR in the reverse order...

- NP₁ (every city) ends up not c-commanding its trace ⇒ illicit movement!
- semantics would come out as $\lambda s. \exists x(\text{PUB}'(s, x) \land \text{IN}'(s, x, x_1) \land \forall y(\text{CITY}'(s, y) \to \text{OPEN}'(s, x)))$
- unbound variable (corresponds to non-c-commanded trace)

(May 24, 2012)

Inverse Linking

(1) Some pub in every town offers every beer.

S-Structure

Inverse linking

Inverse Linking

(1) Some pub in every town offers every beer.

- with our current tools, we can derive three readings:
 - $\lambda s. \forall z (\text{BEER}'(s, z) \rightarrow \forall y (\text{TOWN}'(s, y) \rightarrow \exists x (\text{PUB}'(s, x) \land \text{IN}'(s, x, y) \land \text{OFFER}'(s, x, z))))$
 - $\lambda s. \forall y (\text{TOWN}'(s, y) \rightarrow \forall z (\text{BEER}'(s, z) \rightarrow \exists x (\text{PUB}'(s, x) \land \text{IN}'(s, x, y) \land \text{OFFER}'(s, x, z))))$
 - $\lambda s. \forall y(\text{TOWN'}(s, y) \rightarrow \exists x(\text{PUB'}(s, x) \land \text{In'}(s, x, y) \land \forall z(\text{BEER'}(s, z) \rightarrow \text{OFFER'}(s, x, z))))$
- two more readings are possible but cannot be derived so far:
 - $\lambda s. \forall z (\text{BEER}'(s, z) \rightarrow \exists x (\text{PUB}'(s, x) \land \forall y (\text{TOWN}'(s, y) \rightarrow \text{IN}'(s, x, y)) \land \text{OFFER}'(s, x, z)))$
 - $\lambda s.\exists x(\text{PUB}'(s,x) \land \forall y(\text{TOWN}'(s,y) \to \text{IN}'(s,x,y)) \land \forall z(\text{BEER}'(s,z) \to \text{OFFER}'(s,x,z)))$