Semantics 1

June 14, 2012

Gerhard Jäger

Pronouns

- Reflexive and personal pronouns depend on context for their interpretation.
- Reflexives can be interpreted in two ways:
(1) coreferent:
(1) Peter $_{i}$ shaved himself ${ }_{i}$.
(2) (semantically) bound:
(2) a. by a quantifier: Every player $_{i}$ shaved himself f_{i}
b. by a wh-phrase: A man who ${ }_{i}$ shaved himself ${ }_{i}$ arrived.

Pronouns

- Personal pronouns can be interpreted in three ways:
(1) free: (denotation is fixed by the context of utterance)
(1) $\mathrm{Mary}_{i}{\text { likes } \mathrm{him}_{i} \text {. }}^{\text {. }}$
(2) coreferent:
(2) $\left[\text { Peter }_{i} \text { 's father }\right]_{k}$ shaved him_{i}.
(2) (semantically) bound:
(3) a. by a quantifier: Every philosopher i_{i} praised a book that he ${ }_{i}$ wrote.
b. by a wh-phrase: A philosopher who ${ }_{i}$ praised every book that he ${ }_{i}$ wrote arrived.

Reflexives

- lexical meaning:

$$
\| \text { himself }_{i} \|=x_{i}
$$

(and likewise for all other reflexives)

Reflexives

- Coreferent reading:
(1) Peter $_{1}$ shaved himself ${ }_{1}$.
- Index 1 on name Peter restricts the context of interpretation to such assignment functions where

$$
x_{1}=\mathrm{P}^{\prime}
$$

Reflexives

- compositional derivation:

- contextual equivalence:

$$
x_{1}=\mathrm{P}^{\prime} \vdash \lambda s \cdot \operatorname{SHAVE}^{\prime}\left(s, \mathrm{P}^{\prime}, x_{1}\right)=\lambda s . \operatorname{SHAVE}^{\prime}\left(s, \mathrm{P}^{\prime}, \mathrm{P}^{\prime}\right)
$$

Reflexives

- binding by a quantifier
(1) Every player $_{1}$ shaved himself ${ }_{1}$.

Reflexives

Recall the interpretation rule for the root node, ie. a structure that results from QR:

$$
\begin{aligned}
\left\|S^{\uparrow}\right\| & =\left\|N P_{1}\right\|\left(\lambda x_{1} \cdot\left\|S^{\downarrow}\right\|\right) \\
& =\lambda Q \lambda s \cdot \forall x\left(\operatorname{PLAYER}^{\prime}(s, x) \rightarrow Q(s, x)\right)\left(\lambda x_{1} \lambda s \cdot \operatorname{SHAVE}^{\prime}\left(s, x_{1}, x_{1}\right)\right) \\
& =\lambda s \cdot \forall x\left(\operatorname{PLAYER}^{\prime}(s, x) \rightarrow \operatorname{SHAVE}^{\prime}(s, x, x)\right)
\end{aligned}
$$

- Rule for QR involves applying λx_{1} to the lower S-segment
- this λ-operator binds the (variable corresponding to) the trace as well as the (variable corresponding to) the reflexive
- Unlike in cases of coreference, the final interpretation does not contain free variables, and the indexing does not impose constraints on the context

Reflexives

- binding by a wh-pronoun
(1) A man who shaved himself arrived.

Reflexives

Recall the interpretation rule for the $\overline{\mathrm{S}}$-node, ie. a structure that results from wh-movement:

$$
\begin{aligned}
\|\bar{S}\| & =\left\|_{1}\right\|\left(\lambda x_{1} \cdot\|S\|\right) \\
& =\lambda P \lambda Q \lambda x \lambda s \cdot Q(s, x) \wedge P(s, x)\left(\lambda x_{1} \lambda s \cdot \operatorname{SHAVE}^{\prime}\left(s, x_{1}, x_{1}\right)\right) \\
& =\lambda Q \lambda x \lambda s \cdot Q(s, x) \wedge \operatorname{SHAVE}^{\prime}(s, x, x)
\end{aligned}
$$

- Rule for interpreting moved wh-elements involves applying λx_{1} to the S-node
- this λ-operator binds the (variable corresponding to) the trace as well as the (variable corresponding to) the reflexive

Personal pronouns

- Free pronouns:
- coindexed neither with a c-commanding binder (quantifier or wh-phrase) nor with any proper noun within the same sentence
- correspond to free variables in semantic representation
- interpretation is determined by assignment function, i.e. by the context
- behave like proper nouns with respect to semantic composition
(1) John ${ }_{1}$ shaved him ${ }_{2}$

Personal pronouns

- Coreferent pronouns:
- coindexed with some proper noun within the same sentence
- due to Binding Principle B, this NP must not c-command the pronoun if it occurs within the same local clause
- behave like free pronouns with respect to semantic composition
- interpretation is constrained by context (just like for coreferent reflexives)

Personal pronouns

(1) [Every student from Tübingen $\left._{1}\right]_{2}$ likes it_{1}.

Personal pronouns

- Index 1 on name Tübingen restricts the context of interpretation to such assignment functions where

$$
x_{1}=\mathrm{T}^{\prime}
$$

- contextual equivalence:

$$
x_{1}=\mathrm{T}^{\prime} \vdash\|S\|=\lambda s . \forall x\left(\operatorname{STUDENT}^{\prime}(s, x) \wedge \operatorname{FROM}^{\prime}\left(s, x, \mathrm{~T}^{\prime}\right) \rightarrow \operatorname{LIKE}^{\prime}\left(s, x, \mathrm{~T}^{\prime}\right)\right)
$$

Personal pronouns

- Bound pronouns:
- co-indexed with a binder - i.e. a quantifier or a wh-phrase - that c-commands the pronoun at LF
- due to Binding Principle B, this binder must not c-command the pronoun at S-structure

Personal pronouns

(1) $\left.[\text { A student from [every city }]_{1}\right]_{2}$ likes it ${ }_{1}$.

- S-Structure: no c-command $\leadsto B T$ Principle B is fulfilled

Personal pronouns

- LF: inverse linking reading \leadsto c-command \leadsto binding

Personal pronouns

- LF: narrow scope reading \leadsto no c-command \leadsto pronoun remains free

Personal pronouns

Derivation of previous reading, step by step

$$
\begin{aligned}
\left\|P P^{\downarrow}\right\|= & \lambda P \lambda x \lambda s . P(s, x) \wedge \mathrm{FROM}^{\prime}\left(s, x, x_{1}\right) \\
\left\|P P^{\uparrow}\right\|= & \lambda P \lambda x \lambda s \cdot P(s, x) \wedge\left\|N P_{1}\right\|\left(s, \lambda x_{1} \lambda s .\left\|P P^{\downarrow}\right\|(\lambda x \lambda s . \top)(x)\right) \\
\left\|P P^{\downarrow}\right\|(\lambda x \lambda s . \top)(x)= & \left(\lambda P \lambda x \lambda s \cdot P(s, x) \wedge \operatorname{FROM}^{\prime}\left(s, x, x_{1}\right)\right)(\lambda x \lambda s . \top)(x) \\
= & \top \wedge \operatorname{FROM}^{\prime}\left(s, x, x_{1}\right) \\
= & \operatorname{FROM}^{\prime}\left(s, x, x_{1}\right) \\
\left\|P P^{\uparrow}\right\|= & \lambda P \lambda x \lambda s \cdot P(s, x) \wedge\left\|N P_{1}\right\|\left(s, \lambda x_{1} \lambda s . \mathrm{FROM}^{\prime}\left(s, x, x_{1}\right)\right) \\
= & \lambda P \lambda x \lambda s \cdot P(s, x) \wedge \\
& \left(\lambda Q \lambda s \cdot \forall y\left(\operatorname{CITY}^{\prime}(s, y) \rightarrow Q(s, y)\right)\right)\left(\lambda x_{1} \lambda s . \operatorname{FROM}^{\prime}\left(s, x, x_{1}\right)(s)\right. \\
= & \left.\lambda P \lambda x \lambda s \cdot P(s, x) \wedge \forall y\left(\operatorname{CITY}^{\prime}(s, y) \rightarrow \operatorname{FROM}^{\prime}(s, x, y)\right)\right)
\end{aligned}
$$

