Mathematical and computational models of language evolution

Gerhard Jäger

Institute of Linguistics, Tübingen University

DGfS Summer School

August 20, 2013

The evolution of vowel spaces

- micro-variation in the inventory of vowels between languages: every language is different
- however, very strong tendencies:
 - most languages have five vowels
 - (almost) every language has [a], [i] and [u] like vowels
 - most vowel inventories are peripheral and symmetric etc.
- proposal (see for instance de Boer 2001):

Vowel inventories must be evolutionarily stable!

Articulation

- speech sound
- voiced
- no constriction of the vowel tract
- vowel quality depends on
 - position of tongue
 - gesture of the lips
 - ...

Acoustics

• periodic sonic wave

Figure: Amplitude of the vowel /u/

Acoustics

• spectral analysis:

Figure: Spectrogramm of /a/-/e/-/i/-/o/-/u/

Acoustics

- vowel is superposition of discrete harmonic waves:
 - fundamental frequency
 - formants

Figure: first five formants of /a-e-i-o-u/

Acoustics

• first two formants are crucial for identification of vowels

Acoustics

• more realistic picture:

Universal tendencies of vowel inventories

- comparison of vowel inventories in hundreds of languages reveals
 - virtually all languages use the vowels [a], [i], [u]
 - almost all vowels in all languages are peripheral
 - vowel inventories tend to be symmetrical
 - ...

Liljencrants and Lindblom (1972)

- vowel systems tend to maximize perceptual distance between vowels
- can be modeled as minimizing potential energy of a vowel system
- energy is proportional to sum of inverse squared distances
- fairly good typological predictions

Survey of 500+ vowel inventories

Communication via the vowel space

Game theoretic model

- Signaling game
- types: between 3 and 9 vowel categories
- signals: each point within the two-dimensional (F1/F2) vowel space

Communication via the vowel space

One round of an evolutionary signaling game

- ullet nature picks a vowel category v_S and shows it to S
- ullet S picks a point p_{intend} in the vowel space
- ullet a normally distributed random variable is added to p_{intend} , yielding p_{prod}
- ullet another normally distributed random variable is added to p_{prod} , yielding p_{perc}
- ullet R observes p_{perc} and picks a vowel category v_R
- if $v_S = v_B$, both players score a point

Exemplar dynamics

- empiricist view on language processing/language structure
- popular in functional linguistics (esp. phonology and morphology) and in computational linguistics (aka. "memory-based")

Basic idea

- large amounts of previously encountered instances ("exemplars") of linguems are stored in memory
- very detailed representation of exemplars
- little abstract categorization
- similarity metric between exemplars
- new linguemes are processed in a similarity-based way

Exemplar dynamics: implementation

Sender

- chooses p_{intend} at random from multiset $\{p|\langle v_S,p\rangle\in \text{memory}\}$
- if communication succeeds $(v_S=v_R)$, oldest item in memory is replaced with $\langle v_S, p_{prod} \rangle$
- otherwise memory remains unchanged

Receiver

- v_H is picked such that $\min\{d(p_{perc},p)|\langle v_H,p\rangle\in$ memory} is minimized
- if communication succeeds $(v_S=v_R)$, oldest item in memory is replaced by $\langle v_R, p_{perc} \rangle$
- otherwise memory remains unchanged

Simulations

Setup

- population of 20 agents
- each agent has a memory of 4000 previous observations per vowel category (initialized with random values)
- 300k iterations of the signaling game
- sender and receiver are picked at random

Inspired by much more sophisticated simulations by Bart de Boer.

Simulation results

- black dots display average sender strategy for each agent and vowel category)
- colored dots display receiver strategies (colors represent vowel categories)

Evaluation

- more than half of the typologically dominant patterns correspond to (experimentally determined) ESSs (150 out of 264 in the database)
- five out of seven ESSs correspond to empirically attested vowel systems
- even the two outliers look natural (symmetric systems with peripheral prototypes)

Theoretical considerations

ESS under replicator dynamics: strict Nash equilibria

- sender strategy: mapping from vowel categories to points in the vowel space
- receiver strategy: categorization of points

Voronoi tesselations

- suppose receiver strategy R is given and known to the sender: which sender strategy would be the best response to it?
 - every signal p has a "prototypical" interpretation: R(p)
 - for every vowel category v: S's best choice is to choose the p that minimizes the distance between p and R(p)
 - optimal S thus induces a partition of the meaning space
 - ullet Voronoi tesselation, induced by the range of R

Open question

- numeric calculation of the ESSs for the human vowel space
- Exemplar Dynamics is similar but not identical to replicator dynamics
- conjecture: as the variance of the random variables goes to 0, the attractor states of the exemplar dynamics converges towards SNEs

- de Boer, B. (2001). *The Origin of Vowel Systems*. Oxford University Press, Oxford.
- Liljencrants, J. and B. Lindblom (1972). Numerical simulations of vowel quality systems: The role of perceptual contrast. *Language*, **48**:839–862.
- Schwartz, J.-L., L.-J. Boe, N. Vallé, and C. Abry (1997). The dispersion-focalization theory of vowel systems. *Journal of Phonetics*, **25**:255–286.