Phylogenetic trees IV Maximum Likelihood

Gerhard Jäger

Words, Bones, Genes, Tools February 28, 2018

Theory

Theory

Recap: Continuous time Markov model

$$P(t) = \begin{pmatrix} s + re^{-t} & r - re^{-t} \\ s - se^{-t} & r + se^{-t} \end{pmatrix}$$

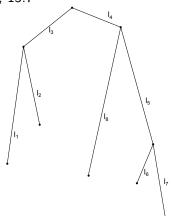
$$\pi = (s, r)$$

 \wedge

Likelihood of a tree

background reading: Ewens and Grant (2005), 15.7

- simplifying assumption: evolution at different branches is independent
- suppose we know probability distributions v_t and v_b over states at top and bottom of branch l_k
- $\mathcal{L}(l_k) = v_t^T P(l_k) v_b$



Likelihood of a tree

 $\bullet \,$ likelihoods of states (0,1) at root are

 $v_1^T P(l_1) v_2^T P(l_2)$

Iog-likelihoods

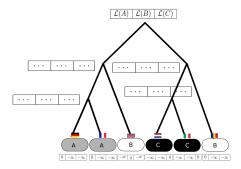
 $\log(v_1^T P(l_1)) + \log(v_2^T P(l_2))$

• log-likelihood of larger tree: recursively apply this method from tips to root

 $|_1$

V₁

Likelihood of a tree



(Log-)Likelihood of a tree

• this is essentially identical to Sankoff algorithm for parsimony:

- weight $(i, j) = \log P(l_k)_{ij}$
- $\bullet\,$ weight matrix depends on branch length $\rightarrow\,$ needs to be recomputed for each branch
- overall likelihood for entire tree depends on probability distribution on root
- if we assume that root node is in equilibrium:

$$\mathcal{L}(\mathsf{tree}) = (s, r)^T \mathcal{L}(\mathsf{root})$$

- does not depend on location of the root (\rightarrow time reversibility)
- this is for one character likelhood for all data is product of likelihoods for each character

(Log-)Likelihood of a tree

- likelihood of tree depends on
 - branch lengths
 - rates for each character
- likelihood for tree topology:

$$\mathcal{L}(\mathsf{topology}) = \max_{l_k: \ k \ \mathsf{is a branch}} \mathcal{L}(\mathsf{tree}|ec{l_k})$$

(Log-)Likelihood of a tree

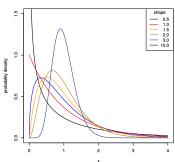
- Where do we get the rates from?
- different options, increasing order of complexity

 - If r = empirical relative frequency of state 1 in the data (identical for all characters)
 - a certain proportion p_{inv} (value to be estimated) of characters are invariant
 - In the second second

Gamma-distributed rates

- we want allow rates to vary, but not too much
- common method (no real justification except for mathematical convenience)
 - equilibrium distribution is identical for all characters
 - rate matrix is multiplied with coefficient λ_i for character i
 - λ_i is random variable drawn from a Gamma distribution

$$\mathcal{L}(r_i = x) = \frac{\beta^{\beta} x^{(\beta-1)} e^{-\beta x}}{\Gamma(\beta)}$$

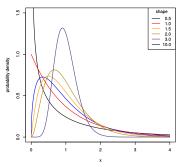


Gamma distributions

Gamma-distributed rates

- overall likelihood of tree topology: integrate over all λ_i, weighted by Gamma likelihood
- computationally impractical
- in practice: split Gamma distribution into *n* discrete bins (usually *n* = 4) and approximate integration via Hidden Markov Model

Gamma distributions



Modeling decisions to make

aspect of model	possible choices	number of parameters to estimate
branch lengths	unconstrained ultrametric	2n-3 (n is number of taxa) n-1
equilibrium probabilities	uniform empirical ML estimate	0 1 1
rate variation	none Gamma distributed	0 1
invariant characters	none p_{inv}	0 1

This could be continued — you can build in rate variation across branches, you can fit the number of Gamma categories . . .

Model selection

tradeoff

- rich models are better at detecting patterns in the data, but are prone to over-fitting
- parsimoneous models less vulnerable to overfitting but may miss important information
- standard issue in statistical inference
- one possible heuristics: Akaike Information Criterion (AIC)

 $AIC = -2 \times log likelihood + 2 \times number of free parameters$

• the model minimizing AIC is to be preferred

Theory

Example: Model selection for cognacy data/ UPGMA tree

model no.	branch lengths	eq. probs.	rate variation	inv. char.	AIC
1	ultrametric	uniform	none	none	17515.95
2	ultrametric	uniform	none	p_{inv}	17518.39
3	ultrametric	uniform	Gamma	none	17517.89
4	ultrametric	uniform	Gamma	p_{inv}	17519.75
5	ultrametric	empirical	none	none	16114.66
6	ultrametric	empirical	none	p_{inv}	16056.85
7	ultrametric	empirical	Gamma	none	15997.16
8	ultrametric	empirical	Gamma	p_{inv}	16022.21
9	ultrametric	ML	none	none	16034.96
10	ultrametric	ML	none	p_{inv}	16058.83
11	ultrametric	ML	Gamma	none	15981.94
12	ultrametric	ML	Gamma	p_{inv}	16009.90
13	unconstrained	uniform	none	none	17492.73
14	unconstrained	uniform	none	p_{inv}	17494.73
15	unconstrained	uniform	Gamma	none	17494.73
16	unconstrained	uniform	Gamma	p_{inv}	17496.73
17	unconstrained	empirical	none	none	16106.52
18	unconstrained	empirical	none	p_{inv}	16049.28
19	unconstrained	empirical	Gamma	none	16033.21
20	unconstrained	empirical	Gamma	p_{inv}	16011.38
21	unconstrained	ML	none	none	16102.04
22	unconstrained	ML	none	p_{inv}	16051.27
23	unconstrained	ML	Gamma	none	16025.99
24	unconstrained	ML	Gamma	p_{inv}	16001.00

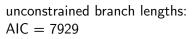
Theory

Tree search

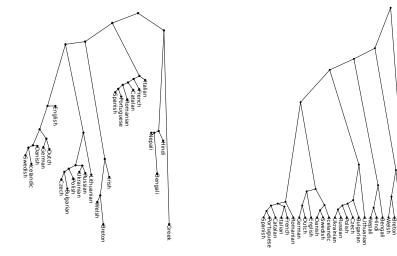
- ML computation gives us likelihood of a tree topology, given data and a model
- ML tree:
 - heuristic search to find the topology maximizing likelihood
 - optimize branch lengths to maximize likelihood for that topology
- computationally very demanding!
- for the 25 taxa in our running example, ML tree search for the full model requires several hours on a single processor; parallelization helps
- ideally, one would want to do 24 heuristic tree searches, one for each model specification, and pick the tree+model with lowest AIC
- in practice one has to make compromises

Running example

Running example: cognacy data

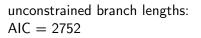


ultrametric: AIC = 7972

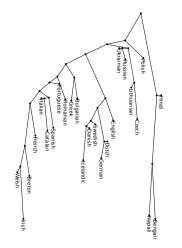


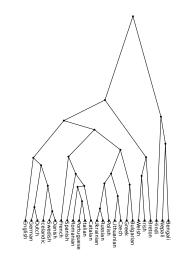
Gree

Running example: WALS data

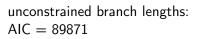


ultrametric: AIC = 2828

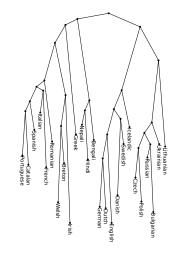


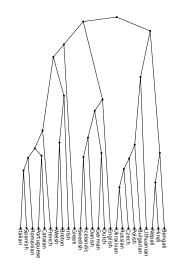


Running example: phonetic data



ultrametric: AIC = 90575





Wrapping up

- ML is conceptually superior to MP (let alone distance methods)
 - different mutation rates for different characters are inferred from the data
 - possibility of multiple mutations are taken into account depending on branch lengths
 - side effect of likelihood computation: probability distribution over character states at each internal node can be read off
- disadvantages:
 - computationally demanding
 - many parameter settings makes model selection difficult (note that the ultrametric trees in our example are sometimes better even though they have higher AIC)
 - ultrametric constraint makes branch lengths optimization computationally more expensive ⇒ not feasible for larger data sets

Ewens, W. and G. Grant (2005). *Statistical Methods in Bioinformatics: An Introduction*. Springer, New York.