Semantics as an abstraction from Pragmatics

Robert van Rooij ILLC/Amsterdam

Interest

From

• Formal semantics and pragmatics

to

- Language change
- Evolution of language
- Language universals.

Mostly: concentrate on *syntax*. But

I am most interested in semantics and pragmatics

Linguistic structure

Popular asssumptions:

• Syntax: universal, innate

Pragmatics: universal, rational principles

Make exclusive use of on-the-spot reasoning

Semantics: arbitrary conventions

However:

- Syntax influenced by linguistic *use*;

 Pragmatics makes use of (default) rules, and
 Semantics has also universals.
- My Interest:
 What is **balance** between
 - 1. rules and reasoning in pragmatics?
 - 2. arbitrary and universal rules in semantics?
- and how did rules *evolve*?

Semantic universals

- properties, relations
- meaning of function words.

 connectives, determiners/quantifiers, modals, tenses, (discourse) particles, prepositions, moods, comparatives, polarity items, ,...
- Assumption: all languages have them.
 - \Rightarrow Semantics **not arbitrary**.
- Why is it natural to assume this?
 - 1. Words express *Innate* concepts. Others?
 - 2. Such words are very useful, utility
 - 3. they are easy to learn, and learnability
 - 4. they are *cheap* in *processing*. **complexity**

Example: Natural properties

All languages have color words, but not arbitrary which ones (Berlin & Kay; Goodman: grue, bleen)

Monotonicity important for ordering-based Ptys (e.g. *fast*, comes down to distributivity (*came*))

Natural Relations (Rubinstein)

- All languages have **linear relations** reflexive, transitive, antisymmetric, connected
- indicator friendly: (usefulness)

 Binary R can denote any element in any subset of a set iff R is a linear ordering.
- describability: (learnability)

 Linear orderings are (almost) optimal w.r.t.

 the criterion of minimizing the number of observations required for definition/learning

Semantics: stable meaning

- Want express useful + stable/flexible items
- Helmholz, 19th century

Geometrical *invariants* in space-time (notions unaffected by transformations) are lexicalized in languages. (e.g. 'inside, behind, towards')

- Want to express concepts in *stable* way.
- Grice, 1957 'Meaning' (for more arbitrary)
 Pragmatics: The person X uses the term W
 to refer to the object O (at time t)
 Semantics: The term W denotes the object O
- How? Lewis: stable in community/time. Solution of recurrent coordination problem.

Concept formation by abstraction

- 1. Absolute invariance (universal demand)

 Weight is a relation concept: what you weigh depends on the gravitational field you are in.

 Mass is quantity that a body has, invariant of gravitational field. So, the latter is an intrinstic property of an object.
- 2. Invariant under normal conditions

We can define a *stable* (dispositional) property <u>observable</u> in terms of counterfactuals: An object is observable if it would be observed if a *normal* observer were *suitably* placed.

3. **Agent irrelevance** (existential demand) It is irrelevant *who* or what does the observation (or verification, or proof).

Semantics: abstracting context

Pragmatics = context dependent.

Make context-independent by abstraction:

- Indexicals, pronouns (Kaplan)
 'I': the speaker of context
- adjectives (Kamp,...) $[CN \to CN]$ big: Jumbo is a big mouse/elephant.
- modals (vFraassen) epistemic/deontic,...
- quantifiers, context set (Westerstahl)
- Questions (perhaps Answers) (own work)
 Domain, mention-all, mention-some, scalar...

Required presupposition on good communication: There is enough **common ground**.

Semantics $= \exists$ closure

A man is walking in the park.
Pragm: speaker specific man in mind
But, ♦ hearer doesn't know which man
Semantics: ∃ quantify over it. (safe strategy)

• *He* is whisling.

Pragm: S specific man in mind for pronoun. DRT/FCS: \exists quantify over whole discourse.

Ralph believes that Ortcutt is a spy.
Communicated information (intuitively):
Speaker has a specific guise of O of John in mind and states that John believes that O under this guise is a spy.
Semantics (Kaplan, Richard, vRooij97):
∃ quantify over guises/counterpart functions.

 \exists -closure: **safe** view on semantics.

 \Rightarrow It gives rise to stable meanings.

Semantics: invariance (Tarski)

Characterize 'logical' items by invariance

Quantity (individual neutrality):
permutation invariant, dependence only on
number of individuals. (vBenthem, Keenan)
Which expressions are permutation invariant?
Type e: no expression.
Type \(\langle(t,t),t\rangle\): the Boolean connectives.
Type \(\langle(e,e),t\rangle\): identity and its Boolean
compounds, universal and empty relation.
Type \(\langle(e(et)t\rangle\): only elementhood.
Type \(\langle(e(et)(et)\rangle\): many, e.g. reflexivization.

• Quality: extra assumption, or more general Permutation invariant if extra assumption: $all \rightarrow all \ blond$, possessives: Mary's.

Generalize: Reflexivization only P-invariant Boolean homomorphism in type $\langle (e(et)(et)) \rangle$. cf. Keenan&Stabler on **linguistic invariants**

Semantics: context invariance

- Meaning independent of domain D_e (EXT) e.g. every, but not everything, no, not.
- Assume extra assumption of Restriction: REST: if $E \subseteq E'$, then for $A_1, ..., A_k \subseteq E'$: $f_E(A_1 \cap E, ..., A_k \cap E) = f_{E'}(A_1, ..., A_k) \cap E$. Fact: QUANT and REST characterize Boolean operations uniformly. (vBenthem)
- Compare with **Gazdar's explanation**.

 Gazdar '79 excludes potential connectives by
 - 1. non-redundance, (e.g. T(1) = 1, T(0) = 0)
 - 2. relevance (e.g. P(1) = 1, P(0) = 1)
 - 3. processing: no negative n-ary connective \Rightarrow Only \neg , \wedge and \vee !!!

Assume: Syntax structures linearly unordered

Processing constraints

- Conservativity: $D_E(A, B)$ iff $D_E(A, A \cap B)$
- Monotonicity:

$$R \uparrow, \downarrow D_E(A, B) \& B \subseteq / \supseteq B' \Rightarrow D_E(A, B')$$

 $L \uparrow, \downarrow: D_E(A, B) \& A \subseteq / \supseteq A' \Rightarrow D_E(A', B')$

- **Fact**: The square of opposition quantifiers are the double monotone ones (modulo variety).
- Why not 'not all'? Horn: implicature 'some'.
- Continuity: $f(\bigcup_i A_i) = \bigcup_i (f(A_i))$ Can compute at simple arguments. Give motivation for Quinean operators.
- Computability: what machine is required in machine hierarchy to implement a **verifying** machine? (semantic automata)

Natural place in logical space

- The Priorean basic tenses (**P**, **F**) are those that satisfy Quality (order preserving automorphisms) and Continuity.
- Extra structure on temporal constructions:
 e.g. must denote convex sets → more of the natural temporal expressions.
- In general: Logical Space is Vector Space
 (van Fraassen, Stalnaker, Gardenfors):
 Compatible with possible worlds semantics
 Which areas ◊ expressed by NL sentence?
 Which areas form natural properties?
 Are there natural constraints? (eg. convexity)
 (see also Zwarts & Winter's vector semantics)
- Modalities express *invariance* under transformations of location functions. What are natural constraints?

Abstraction from utility

(Merin, van Rooij)

- Linear intuition \rightarrow Boolean semantics:
 - 1. Define '¬' i.t.o. utility: $b = \neg a$ iff $\forall U, g: U(g, b) \geq 0$ iff $U(g, a) \leq 0$.
 - 2. U(a and b) = U(a) + U(b). Addition Normal condition: a, b independent on g. $U(a \cap b) = U(a) + U(b)$.
 - 3. $U(a \text{ or } b) = \alpha U(a) + (1 \alpha)U(b)$. Choice Normal condition: a, b disjount. $U(a \cup b) = \alpha U(a) + (1 \alpha)U(b)$.
- Entailment relation $a \models b$ iff for all 'safe' $U: U(a) \geq U(b)$. For questions for all U (not only safe ones).
- Also: linguistic scales and licensing conditions $U(\alpha_{NPI}) \geq U(\alpha_{alt})$, if α DE \rightarrow licensing.

Gricean pragmatics

Language use and organization such that communicate *useful* information in an *efficient* but still *effective* and *reliable* way

- Grice's Cooperative principle
- Four conversational maxims:
 - Quality: speak the truth
 - Quantity: the whole truth
 - Relevance: but only what is of interest
 - *Manner*: and in an efficient way

Presupposes: preferences similar (aligned)

Manner: Efficiency

- Grice's Manner *iconicity* principle: (un)marked form gets (un)marked meaning
 - $kill \leftrightarrow cause \ to \ die, \ not \leftrightarrow un$
 - $intonation/focus \leftrightarrow unstressed$
- Meanings underspecified, still default rule
- Compare solutions 1 and 2 and assume $P(t_1) > P(t_2)$ and $C(m_1) < C(m_2)$ Both are separating equilibria. Both are evolutionary stable
 - But, if mutation or correlation, then only solution 1 can emerge.
- \Rightarrow **Evolutionary** analysis of why *iconicity*. Moreover: *underspecification* explained.

Binding and centering theory

- John came in. He sat down. co-ref.

 John came in. The man sat down. disjoint
- John likes *his father*. co-ref.

 John likes *the man's* father. disjoint
- Co-reference of he, $his \leftrightarrow disjoint the man$
- Explain by Horn's division:

 he: Light/underspecified to salient objects,

 expensive names/descriptions to non-salient.
- Salience by P: Coding with highest exp. util \Rightarrow stable in evolution
- \diamond explanation centering. Also Binding rules?
- Why 'John like *him/himself as coreference? Disjoint Reference Presumption in clause

Quality: Why speak truth?

	a_1	a_2
t_H	x, 1	z, 0
t_L	y, 0	w, 1

Communication possible only if $x \ge z$ and $y \le w$. In general: only if *preferences aligned*.

• **Problem**: Why honest if preferences diverge?

	a_1	a_2
t_H	1, 1	0,0
t_L	1,0	0, 1

Both types prefer $a_1 \rightsquigarrow \text{`I am } t_H\text{'is not credible}$

- Solution: Costly signalling (Spence, Zahavi)
- $C(t_H, 'I \text{ am } t_H') < 1 < C(t_L, 'I \text{ am } t_H').$
- Production costs vs. Social costs.
- Evolution: speaking truthful is costless.

Quan/Rel: Information Exchange

- Standard: info not verifiable
 → No incentive to speak the truth
- Even if truth demanded, $misleading still \diamondsuit$

	a_1	a_2
t_H	1, 1	0,0
t_L	1,0	0, 1

• $S(t_H) =$ 'I am t_H ', $S(t_L) =$ 'I am t_H or t_L '

$$\Rightarrow S^{-1}(\text{`I am } t_H\text{'}) = \{t_H\}$$

$$S^{-1}(\text{`I am } t_H \text{ or } t_L\text{'}) = \{t_L\}$$

• Pragmatic interpretation

$$Prag(\phi, <) = \{t \in [\phi] | \neg \exists t' \in [\phi] : t' < t\}$$

where t' < t if speaker strictly prefers t to t'.

Implicatures & minimal models

Horn, Levinson, Atlas: Two kinds of implicatures:

• Q-implicatures (Quantity 1, Relevance)
Say as much as you can! (scalar implicatures)
→ Interpret in least informative/relevant way.

Exhaustive interpretation (Gr & St, 1984). i.t.o. **minimal models** (vRooij&Schulz, '04): $exh(\phi, <_P) = \{w \in [\phi] | \neg \exists v \in [\phi] : v <_P w\}$

I-implicatures (Quantity 2, Manner)
Don't say more than you must!

→ Interpret in most stereotypical way.

John killed the sheriff \rightarrow by knife or pistol.

 $v \prec_C w$ iff v is more 'normal' than w in C. $I(\phi, \prec_C) = \{ w \in [\phi] | \neg \exists v \in [\phi] : v \prec_C w \}$

Note: minimal model analysis (Asher&Lasc).

Complicating games

- Equilibrium: $\langle S, R \rangle$
- Semantic meaning $\phi = [\phi]$ Communicated meaning ϕ : $S^{-1}(\phi)$
- $S \in [T \to M]$ (function from states) $R \in [M \to A]$ (interpr: A = T)
- More naturally: $S \in [(T \times C \times \cdots) \to M]$
- C represents:
 - 1. External context (sp, h, salient d, etc.)
 - 2. Common ground (knowledge)
 - 3. Knowledge of agents (e.g. speaker)
 - 4. Question under Discussion
 - $5. \cdots$

- Assume appropriateness conditions:
- $S^{-1}(\phi)$ tells us more about utterance context.
- Presup (King of France) \rightarrow common ground
- Pronoun \rightarrow unique most salient d
- Focus \rightarrow QUD
- Gricean maxims \rightarrow what speaker knows
- $S^{-1}(\phi) = \{s \in STATE :$
 - 1. ϕ is asserted appropriately in Context(s)
 - 2. Index(s) makes ϕ true
 - 3. $\neg \exists s' \in STATE$ in which (1) and (2) AND in s' speaker could have said something better $\}$

Conventionalization (Lang. change)

- $\forall \phi: S^{-1}(\phi) \rightsquigarrow [\phi] \Rightarrow \text{less reasoning, inform.}$ Conventionalization as *automation* (Givon) Defaults can also be linguistic rules
- Natural for frequently used 'inferences'
 - 1. Presupposition, Focus (accomm., QUD)
 - 2. Weak Exhaust: $[John]_F$ came $\rightarrow \neg \mathbf{K}C(m)$
 - 3. if 'relevance' context independence if approved always by everybody, e.g. '\end{approved}.'
 - 4. *Illocutionary* meaning, not *perlocutive*
- Less natural if Relevance $\uparrow \neq$ Information \uparrow or if extra assumption (e.g. competence) $[\text{John}]_F \text{ came } \rightarrow \mathbf{K} \neg C(m)$

Maximize relevance context-dependent, e.g.

- Involved in non-cooperative game, or
- speaker has specific goals. (P, U)

Conclusions

- Semantics and pragmatics is more interesting than sometimes assumed. Semantics has universals, pragmatics has rules.
- Semantic concepts must be *stable*, but there are diverse ways to achieve this. *Look* what is invariance under context change ('logical constants') versus *make* context independent (abstract from context).
- We would like to have cognitive/pragmatic motivation for semantic universals. But there is no unique way to receive this.
- Question: do 'logical constants' really evolve, or are they inherent to symbolic system?