Introduction Basic Knowledge Different Experiments Conclusion

Artificial Language Learning with Apes, Primates and Songbirds

Referents: Claudia Fausel, Benjamin Layer

Introduction Basic Knowledge Different Experiments Conclusion

<u>Structure</u>

- I. Introduction
- II. Basic Knowledge
 - 1. The Chomsky Hierarchy
 - 2. Sequences and Language
 - 3. Experimental Difficulties
- **III. Experiments**
 - 1. Hauser and Fitch
 - 2. Perruchet and Rey
 - 3. Conway, Christiansen
 - 4. Gentner et al.

IV. Conclusion and neuronal notes

Introduction Basic Knowledge Different Experiments Conclusion

<u>Review</u>

- Apes and Pointing
- Universal Grammar

Introduction Basic Knowledge Different Experiments Conclusion

Chomsky Hierarchy

Туре-0		No restrictions
Type-1	Context-Sensitive	rules of the form $S \rightarrow \epsilon \text{ or } \alpha A\beta \rightarrow \alpha \gamma \beta$ $A, S \in V_N \text{ (S start symbol), } \alpha, \beta, \gamma \in (V_T \cup V_N)^*, \gamma \neq \epsilon$ If $S \rightarrow q$ is a rule, then S never occurs as the right hand side of a rule.
Type-2	Context-Free	Rules of the form $A \rightarrow \gamma$ $A \in V_N$, $\gamma \in (V_T \cup V_N)^*$
Type-3	Finite-State	Rules of the form $A \rightarrow xB$ or $A \rightarrow \overline{x}$ A, $B \in VN$, $\overline{x} \in V_T^*$

Introduction Basic Knowledge Different Experiments Conclusion

Sequental Pattern Learning

Connection between sequential learning and language:

Fixed sequences: idioms, stock phrases, words Statistical learning: discovery of word transitions Hierarchical structure: phrase structure of sentences

Common neural basis of language and sequential learning:

 Agrammatic aphasics also have problems with sequence learning

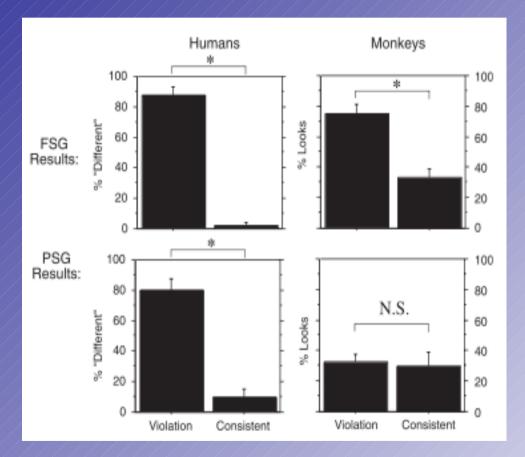
Caveats when comparing non-human and human performance

- Imitating a non-conspecific
- Training non-verbal animals
- "Upgraded" primates
- Homology vs. analogy
- Methodological differences
- Natural context vs. the laboratory
- Human experience

Introduction Basic Knowledge Different Experiments Conclusion

Hauser & Fitch

- Human syntax vs. concatenation of symbols in animal communication
 - → Ability to process hierarchical structures?
- Suggested that nonhuman primates are able to procede FSGs
- Assumption: Only humans are able to understand PSG-Grammars


Introduction Basic Knowledge Different Experiments Conclusion

Hauser & Fitch – The Experiment

- Subjects: two groups of ten cotton-top tamarins
- FSG: (AB)ⁿ and PSG: AⁿBⁿ with n=2 or n=3
- A and B: classes of eight CV-syllables
- Training: 20 min of repeated playback of the grammatic strings
- A-stimuli read by woman, B-stimuli by man
- Observation of the primates' orientation:
 - Suggested, they would look towards the speaker, when there was a grammar violation

Introduction Basic Knowledge Different Experiments Conclusion

Hauser & Fitch - Results

Introduction Basic Knowledge Different Experiments Conclusion

Hauser & Fitch - Results

- For the FSG: Significant difference between lookingrates (72% to violation; 34% to consistent)
- For PSG: No significant difference (29% to violation; 31% to consistent)
- → Primates don't have the ability to master this rule.
 → They are not able to understand the hierarchical structure of PSG.

Introduction Basic Knowledge Different Experiments Conclusion

Perruchet and Rey

Evidence against Fitch & Hauser:

- Discovery of the hierarchical structure not essential to recognize the violations
- Different testing method for primates and humans
- No sequences in the material that made counting necessary (as AAABB)

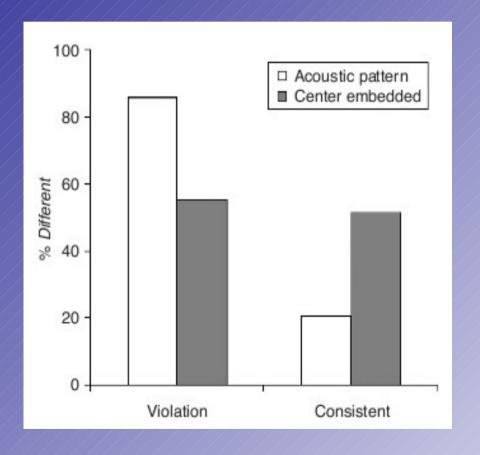
 \rightarrow human subjects could have discriminated the cases with one voice transition from the others

→ Modified the F&H experiment

Introduction Basic Knowledge Different Experiments Conclusion

Perruchet and Rey - Experiment

- Subjects: 32 undergrad students
- Materials: Strings of an center-embeding grammar, with possible violations in two dimensions (center-embedding and pitch variation)
- 3 min learning phase
- Judgement task


Introduction Basic Knowledge Different Experiments Conclusion

Perruchet and Rey - Experiment

Grammatical Structure		Acoustic Pattern (Pitch Variation)	
(Center-Embedding)	п	Violation	Consistent
Violation	2	A1 A2 B1 B2	A1 A2 B1 B2
	3	<u>A1</u> A2 <u>A3</u> B2 <u>B1</u> B3	A1 A2 A3 B2 B1 B3
Consistent	2	A1 A2 B2 B1	A1 A2 B2 B1
	3	<u>A1</u> A2 <u>A3</u> B3 <u>B2</u> B1	A1 A2 A3 B3 B2 B1

Introduction Basic Knowledge Different Experiments Conclusion

Perruchet and Rey - Results

Introduction Basic Knowledge Different Experiments Conclusion

Perruchet and Rey - Results

- No significant difference between violation and consistance for center embedding
- Significant difference for the acoustic pattern
- Subjects' sensitivity to changes in acoustic pattern was better when the strings were longer

→ Results of F&H don't give evidence for a difference between hierarchical structure processing of primates and humans

Introduction Basic Knowledge Different Experiments Conclusion

Conway & Christiansen

As sequential pattern learning plays an important role concerning the human ability of producing and understanding language and grammar, Conway and Christiansen want to examine how far non-humans also possess this ability.

Three experiments:

- Learning action sequences by observation
- Serial ordering of stimuli: The role of planing
- Examination of combinatorial seriation strategies

Introduction Basic Knowledge Different Experiments Conclusion

Conway & Christiansen – Experiment 1

- Capuchin monkeys, chimpanzees, human children (2-4 years)
- Artificial fruit consisting of different sub-components
- Subjects observed experimenter bypassing one or more of the sub-components, then were allowed to manipulate the fruit in order to procure treat contained within.

Introduction Basic Knowledge Different Experiments Conclusion

Conway & Christiansen – Results 1

- When the artificial fruit consisted of only two subcomponents, both non-humans and humans copied the action they observed.
- Human children copied the details of the actions more carefully than the primates did.

Introduction Basic Knowledge Different Experiments Conclusion

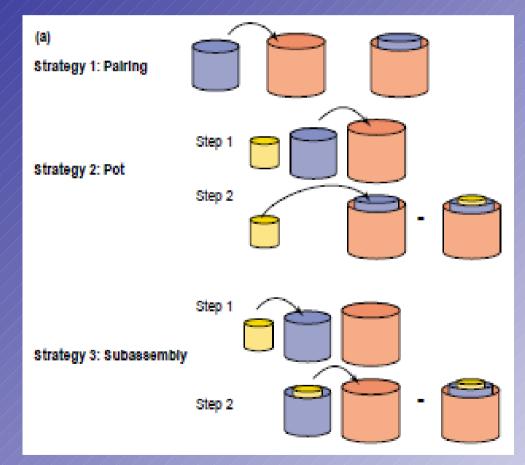
Conway & Christiansen – Experiment 2

- Japanese monkeys, chimpanzees, human adults
- 2-4 colored circles of different size on a touch screen
- Subjects required to press each stimulus in a predetermined order
- Primates recieved pre-training before testing
- Reaction times were collected

Introduction Basic Knowledge Different Experiments Conclusion

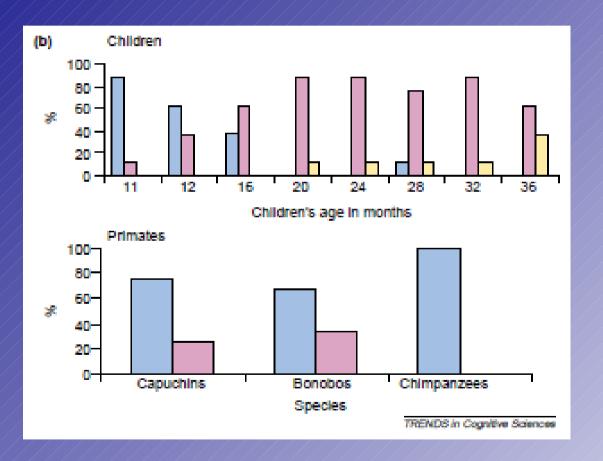
Conway & Christiansen – Results 2

- When the artificial fruit consisted of only two subcomponents, both non-humans and humans copied the action they observed.
- Human children copied the details of the actions more carefully than the primates did.


Introduction Basic Knowledge Different Experiments Conclusion

Conway & Christiansen – Experiment 3

- Capuchin monkeys, chimpanzees, bonobos, human children
- Nesting cups of different size
- Experimenter demonstrated nesting the cups using a hierarchical strategy
- Subjects verbally encouraged to combine the cups


Introduction Basic Knowledge Different Experiments Conclusion

Conway & Christiansen – Experiment 3

Introduction Basic Knowledge Different Experiments Conclusion

Conway & Christiansen – Results 3

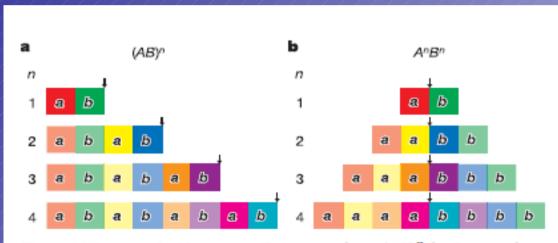
blue – pairing strategy

magenta – pot strategy

yellow - subassembly

Introduction Basic Knowledge Different Experiments Conclusion

Conway & Christiansen – Results


- Primates seem to be capable of encoding, storing and recalling arbitrary fixed sequences (motor actions, visual stumuli)
- Primates encode and represent a list of sequential items by learning each items ordinal positionChimpanzees show evidence of planning their movement sequences to some extent, monkeys do not.

Gentner et al.: Recursive syntactic pattern learning by songbirds

- 11 European starlings
- "language" of 8 "rattle" and 8 "warble" motifs from the repertoire of a single male starling
- Context-free grammar of the form A²B²
- Finite-state grammar of the form (AB)"
- Starlings were trained to classify subsets of sequences
- Second test: Birds were transferred abruptly from the 16 baseline training stimuli to 16 new sequences from the same two grammars.

Introduction Basic Knowledge Different Experiments Conclusion

Gentner et al. - Experiment

Figure 1 | **Grammatical forms. a**, Finite-state form $(AB)^n$. **b**, Context-free form A^nB^n . Both grammars describe patterned sequences of elements (lower-case letters) of the sets 'A' and 'B'. Longer strings of the form $(AB)^n$, where *n* gives the number of AB iterations, are produced by appending elements to the end of an n - 1 sequence. Longer strings with the form A^nB^n are produced by embedding elements into the centre of an n - 1 sequence. Learning of and generalization to an A^nB^n pattern implies the capacity to process syntactic structures generated through recursive centre-embedding. Black arrows denote insertion points for higher-order sequences. Brightly coloured squares mark the 'AB' phrase inserted at each order. Different hues denote different elements.

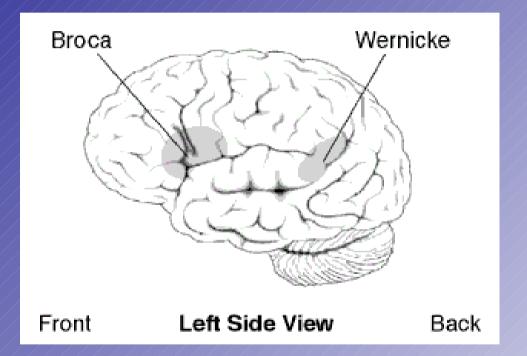
Introduction Basic Knowledge Different Experiments Conclusion

Gentner et al. - Results

9 out of 11 starlings learned to classify FSG & PSG sequences accurately

Second test:

- Birds classified sequences correctly
- Acquired general knowledge about features diagnostic of the two grammarsand applied this knowledge to classify the stimuli correctly.


Introduction Basic Knowledge Different Experiments Conclusion

Neuronal notes (A. D. Friederici)

- Brain regions differ in phylogenetic age
- In humans processing of FSG and PSG in separable brain structures that are adjacent but of different phylogenetic age.
- FSG: phylogenetically older structure
- PSG: younger structure

Introduction Basic Knowledge Different Experiments Conclusion

Neuronal notes

Humans and Non-Humans: Differences in function of Broca's Area?

Introduction Basic Knowledge Different Experiments Conclusion

Neuronal notes

- Broca's area plays important role in grammatical aspects
- Not sure which aspects of syntactic processing are supported by this area.
- Word-order, agreement, verb-subcategorization or local phrasestructure violations do not activate Broca's area.
- Involved when syntactic movement and transformational structures come into play
- Activated for learning of language-like rules
- No activation when rules could not exist in any natural language

Introduction Basic Knowledge Different Experiments Conclusion

Tries to teach language to apes

To some extent apes were able to learn ASL (American Sign Language)

- Nim Chimpsky (chimpanzee)
- Washoe (chimpanzee)
- Koko (gorilla)
- Chantek (orangutan)

Azy, orangutan: able to communicate with written symbols

Introduction Basic Knowledge Different Experiments Conclusion

Conclusion

- Not all of the experiments provide essential evidence (→ P&R, caveats)
- Apes show the ability of sequential learning (but not for hierarchical sequences) which is obligatory but not sufficient
 - → Apes can't speak