Evolutionary game theory and language evolution

Gerhard Jäger
gerhard.jaeger@uni-tuebingen.de

November 26, 2009
Uni Tübingen

Conceptualization of language evolution

prerequisites for evolutionary dynamics

- replication
- variation
- selection

Linguemes

- "any piece of structure that can be independently learned and therefore transmitted from one speaker to another" (Nettle 1999:5)
- Croft (2000) attributes the name lingueme to Haspelmath (Nettle calls them items)
- Examples:
- phonemes
- morphemes
- words
- constructions
- idioms
- collocations
- ...

Linguemes

- Linguemes are replicators
- comparable to genes
- structured configuration of replicators
- Biology: genotype
- Linguistics: utterance

Croft:

The utterance is the genome!

Evolution

Replication

(at least) two modes of lingueme replication:

- acquisition
- priming (Jäger and Rosenbach 2005; Croft and Nettle would perhaps not agree)

Evolution

Replication

(at least) two modes of lingueme replication:

- acquisition
- priming (Jäger and Rosenbach 2005; Croft and Nettle would perhaps not agree)

Variation

- linguistic creativity
- reanalysis
- language contact
- ...

Evolution

Replication

(at least) two modes of lingueme replication:

- acquisition
- priming (Jäger and Rosenbach 2005; Croft and Nettle would perhaps not agree)

Variation

- linguistic creativity
- reanalysis
- language contact
- ...

Selection

- social selection
- selection for learnability
- selection for primability

Fitness

learnability/primability

- selection against complexity
- selection against ambiguity
- selection for frequency

EGT and pragmatics

Horn strategies: prototypical meanings tend to go with simple expressions and less prototypical meanings with complex expressions.
(1) a. John went to church/jail. (prototypical interpretation)
b. John went to the church/jail. (literal interpretation)
(2) a. I am going to marry you. (no indirect speech act)
b. I will marry you. (indirect speech act)
(3) a. I need a new driller/cooker.
b. I need a new drill/cook.

Horn strategies

- simple game:
- players: speaker and hearer
- two forms: f_{0} (short) and f_{1} (long)
- two meanings: m_{0} (frequent) and m_{1} (rare)
- speaker strategies: mappings from meanings to forms
- hearer strategies: mappings from forms to meanings

Speaker strategies

- $S_{1}: m_{0} \mapsto f_{0}, m_{1} \mapsto f_{1}: \xrightarrow{\bullet \bullet}$ "Horn strategy"
- $S_{2}: m_{0} \mapsto f_{1}, m_{1} \mapsto f_{0}$: \therefore
"anti-Horn strategy"
- $S_{3}: m_{0} \mapsto f_{0}, m_{1} \mapsto f_{0}:$

"Smolensky strategy"
"anti-Smolensky strategy"

Hearer strategies

- $H_{1}: f_{0} \mapsto m_{0}, f_{1} \mapsto m_{1}: \bullet \bullet$ 'Horn strategy'
- $H_{2}: f_{0} \mapsto m_{1}, f_{1} \mapsto m_{0}:$

- $H_{3}: f_{0} \mapsto m_{0}, f_{1} \mapsto m_{0}:$ $\rightarrow-$
"Smolensky strategy"
"anti-Smolensky strategy"

Utility of Horn games

- whether communication works depends both on speaker strategy S and hearer strategy H
- two factors for functionality of communication
- communicative success ("hearer economy")

$$
\delta_{m}(S, H)= \begin{cases}1 & \text { iff } \quad H(S(m))=m \\ 0 & \text { else }\end{cases}
$$

- least effort ("speaker economy")

$$
\operatorname{cost}(f) \ldots \text { measure of complexity of expression }
$$

Utility of Horn games

$$
u_{s / h}(S, H)=\sum_{m} p_{m} \times\left(\delta_{m}(S, H)-\operatorname{cost}(S(m))\right)
$$

$p \ldots$ probability distribution over meanings

Utility of Horn game

Let's make up some numbers:

- $p\left(m_{0}\right)=.75$
- $p\left(m_{1}\right)=.25$
- $\operatorname{cost}\left(f_{0}\right)=.1$
- $\operatorname{cost}\left(f_{1}\right)=.2$

Utility of Horn game

	H_{1}	H_{2}	H_{3}	H_{4}
S_{1}	.875	-.125	.625	.125
S_{2}	-.175	.825	.575	.25
S_{3}	.65	.15	.65	.15
S_{4}	.05	.55	.55	.05

Utility of Horn game

	H_{1}	H_{2}	H_{3}	H_{4}
S_{1}	.875	-.125	.625	.125
S_{2}	-.175	.825	.575	.25
S_{3}	.65	.15	.65	.15
S_{4}	.05	.55	.55	.05

- both Horn and anti-Horn are evolutionarily stable
- EGT explains the aversion of natural languages against synonymy and ambiguity
- preference for Horn not directly explainable in standard EGT
- rationalistic considerations favor Horn over anti-Horn:
- Horn strategy is Pareto efficient (nobody can do better in absolute terms)
- Horn strategy risk dominates anti-Horn (if you know the population is in an equilibrium but you do not know in which one, going for Horn is less risky than anti-Horn)
- replicator dynamics favors Horn over anti-Horn:
- complete random state evolves to Horn/Horn
- basin of attraction of Horn is about 20 times as large as basin of attraction of anti-Horn (numerical approximation-does anybody know how to do this analytically?)

Dynamics starting from random state

The evolution of differential case marking

Ways of argument identification

- transitivity may lead to ambiguity
die Frau, die Maria kennt
the woman that Maria knows
the woman that knows Maria
- three ways out
(1) word order
(2) agreement
(3) case
die Frau, die er kennt

the woman that he knows
die Frau, die inn kennt

the woman that knows him
- Suppose one argument is a pronoun and one is a noun (or a phrase)

\{I, BOOK, KNOW

- both conversants have an interest in successful communication
- case marking (accusative or ergative) is usually more costly than zero-marking (nominative)
- speaker wants to avoid costs

speaker strategies	hearer strategies		
always case mark the object (accusative)	ergative is agent and accusative object		
always case mark the agent (ergative)	pronoun is agent		
case mark the object			
if it is a pronoun	pronoun is object		
\vdots		\quad	pronoun is agent
:---			
unless it is accusative			

Statistical patterns of language use

four possible clause types

	O / p	O / n
A / p	he knows it	he knows the book
A / n	the man knows it	the man knows the book

statistical distribution (from a corpus of spoken English)

	O / p	O / n
A / p	$\mathrm{pp}=198$	$\mathrm{pn}=716$
A / n	$\mathrm{np}=16$	$\mathrm{nn}=75$

$$
\mathrm{pn} \gg \mathrm{np}
$$

- functionality of speaker strategies and hearer strategies depends on various factors:
- How often will the hearer get the message right?
- How many case markers does the speaker need per clause on average?

speaker strategies that will be considered

agent is pronoun	agent is noun	obiect is pronoun	object is noun
e(rgative)	e(rgative)	a(ccusative)	a(ccusative)
e	e	a	z(ero)
e	e	z	a
e	e	z	z
e	z	a	a
...
Z	e	z	z
z	z	a	a
z	z	a	z
z	z	z	a
z	z	z	z

- hearer strategies:
- strict rule: ergative means "agent", and accusative means "object"
- elsewhere rules:
(1) $S O$: "The first phrase is always the agent."
(2) $p A$: "Pronouns are agents, and nouns are objects."
(3) $p O$: "Pronouns are objects, and nouns are agents."
(9) $O S$: "The first phrase is always the object."
- strategy space and utility function are known
- probability of meaning types can be estimated from corpus study
- hard to estimate how the complexity of a case morpheme compares to its benefit for disambiguation from the speaker perspective
- parameterized utility function

$$
u(S, H)=\sum_{m} p_{m} \times\left(\delta_{m}(S, H)-k \times \operatorname{cost}(S(m))\right)
$$

Utility of case marking

- let us assume $k=.1$

Speaker strategies	Hearer strategies			
	$S O$	$p A$	$p O$	$O S$
$e e z z$	0.90	0.90	0.90	0.90
$z z a a$	0.90	0.90	0.90	0.90
$e z a z$	0.85	0.85	0.85	0.85
$z e z a$	0.81	0.81	0.81	0.81
$z e a z$	0.61	0.97	0.26	0.61
$e z z z$	0.86	0.86	0.87	0.86
$z e z z$	0.54	0.89	0.54	0.54
$z z a z$	0.59	0.94	0.59	0.59
$z z z a$	0.81	0.81	0.82	0.81
$z z z z$	0.50	0.85	0.15	0.50

Utility of case marking

- let us assume $k=.1$

Speaker strategies	Hearer strategies			
	$S O$	$p A$	$p O$	$O S$
$e e z z$	0.90	0.90	0.90	0.90
$z z a a$	0.90	0.90	0.90	0.90
$e z a z$	0.85	0.85	0.85	0.85
$z e z a$	0.81	0.81	0.81	0.81
$z e a z$	0.61	0.97	0.26	0.61
$e z z z$	0.86	0.86	0.87	0.86
$z e z z$	0.54	0.89	0.54	0.54
$z z a z$	0.59	0.94	0.59	0.59
$z z z a$	0.81	0.81	0.82	0.81
$z z z z$	0.50	0.85	0.15	0.50

Utility of case marking

- only one evolutionarily stable state: zeaz/pA (split ergative)
- very common among Australian aborigines languages

Non-strict Nash equilibria

Why are non-strict Nash Equilibria unstable?

- Dynamics without mutation

Non-strict Nash equilibria

Why are non-strict Nash Equilibria unstable?

- Dynamics with mutation

Utility of case marking

If speakers get lazier...

- $k=0.45$

Speaker strategies	Hearer strategies			
	$S O$	$p A$	$p O$	$O S$
$e e z z$	0.550	0.550	0.550	0.550
$z z a a$	0.550	0.550	0.550	0.550
$e z a z$	0.458	0.458	0.458	0.458
$z e z a$	0.507	0.507	0.507	0.507
$z e a z$	0.507	0.863	0.151	0.507
$e z z z$	0.545	0.538	0.553	0.545
$z e z z$	0.505	0.861	0.148	0.505
$z z a z$	0.510	0.867	0.154	0.510
$z z z a$	0.539	0.531	0.547	0.539
$z z z z$	0.500	0.849	0.152	0.500

Utility of case marking

If speakers get lazier...

- $k=0.45$

Speaker strategies	Hearer strategies			
	$S O$	$p A$	$p O$	$O S$
$e e z z$	0.550	0.550	0.550	0.550
$z z a a$	0.550	0.550	0.550	0.550
$e z a z$	0.458	0.458	0.458	0.458
$z e z a$	0.507	0.507	0.507	0.507
$z e a z$	0.507	0.863	0.151	0.507
$e z z z$	0.545	0.538	0.553	0.545
$z e z z$	0.505	0.861	0.148	0.505
$z z a z$	0.510	0.867	0.154	0.510
$z z z a$	0.539	0.531	0.547	0.539
$z z z z$	0.500	0.849	0.152	0.500

Utility of case marking

... and lazier ...

- $k=0.53$

Speaker strategies	Hearer strategies			
	$S O$	$p A$	$p O$	$O S$
$e e z z$	0.470	0.470	0.470	0.470
$z z a a$	0.470	0.470	0.470	0.470
$e z a z$	0.368	0.368	0.368	0.368
$z e z a$	0.436	0.436	0.436	0.436
$z e a z$	0.483	0.839	0.127	0.483
$e z z z$	0.473	0.465	0.480	0.473
$z e z z$	0.497	0.854	0.141	0.497
$z z a z$	0.494	0.850	0.137	0.494
$z z z a$	0.476	0.468	0.484	0.476
$z z z z$	0.500	0.848	0.152	0.500

Utility of case marking

... and lazier ...

- $k=0.53$

Speaker strategies	Hearer strategies			
	$S O$	$p A$	$p O$	$O S$
$e e z z$	0.470	0.470	0.470	0.470
$z z a a$	0.470	0.470	0.470	0.470
$e z a z$	0.368	0.368	0.368	0.368
$z e z a$	0.436	0.436	0.436	0.436
$z e a z$	0.483	0.839	0.127	0.483
$e z z z$	0.473	0.465	0.480	0.473
$z e z z$	0.497	0.854	0.141	0.497
$z z a z$	0.494	0.850	0.137	0.494
$z z z a$	0.476	0.468	0.484	0.476
$z z z z$	0.500	0.848	0.152	0.500

Utility of case marking

... and lazier...

- $k=0.7$

Speaker strategies	Hearer strategies			
	$S O$	$p A$	$p O$	$O S$
$e e z z$	0.300	0.300	0.300	0.300
$z z a a$	0.300	0.300	0.300	0.300
$e z a z$	0.177	0.177	0.177	0.177
$z e z a$	0.287	0.287	0.287	0.287
$z e a z$	0.431	0.788	0.075	0.431
$e z z z$	0.318	0.310	0.326	0.318
$z e z z$	0.482	0.838	0.126	0.482
$z z a z$	0.457	0.814	0.101	0.457
$z z z a$	0.343	0.335	0.350	0.343
$z z z z$	0.500	0.848	0.152	0.500

Utility of case marking

... and lazier...

- $k=0.7$

Speaker strategies	Hearer strategies			
	$S O$	$p A$	$p O$	$O S$
$e e z z$	0.300	0.300	0.300	0.300
$z z a a$	0.300	0.300	0.300	0.300
$e z a z$	0.177	0.177	0.177	0.177
$z e z a$	0.287	0.287	0.287	0.287
$z e a z$	0.431	0.788	0.075	0.431
$e z z z$	0.318	0.310	0.326	0.318
$z e z z$	0.482	0.838	0.126	0.482
$z z a z$	0.457	0.814	0.101	0.457
$z z z a$	0.343	0.335	0.350	0.343
$z z z z$	0.500	0.848	0.152	0.500

Utility of case marking

- $k=1$

Speaker strategies	Hearer strategies			
	$S O$	$p A$	$p O$	$O S$
$e e z z$	0.000	0.000	0.000	0.000
$z z a a$	0.000	0.000	0.000	0.000
$e z a z$	-0.160	-0.160	-0.160	-0.160
$z e z a$	0.024	0.024	0.024	0.024
$z e a z$	0.340	0.697	-0.016	0.340
$e z z z$	0.045	0.037	0.053	0.045
$z e z z$	0.455	0.811	0.099	0.455
$z z a z$	0.394	0.750	0.037	0.394
$z z z a$	0.106	0.098	0.144	0.106
$z z z z$	0.500	0.848	0.152	0.500

Utility of case marking

- $k=1$

Speaker strategies	Hearer strategies			
	$S O$	$p A$	$p O$	$O S$
$e e z z$	0.000	0.000	0.000	0.000
$z z a a$	0.000	0.000	0.000	0.000
$e z a z$	-0.160	-0.160	-0.160	-0.160
$z e z a$	0.024	0.024	0.024	0.024
$z e a z$	0.340	0.697	-0.016	0.340
$e z z z$	0.045	0.037	0.053	0.045
$z e z z$	0.455	0.811	0.099	0.455
$z z a z$	0.394	0.750	0.037	0.394
$z z z a$	0.106	0.098	0.144	0.106
$z z z z$	0.500	0.848	0.152	0.500

$$
\begin{aligned}
& z e a z / p A \\
& \text { split ergative } \\
& \begin{array}{ll}
z z a z / p A & e z z z / p O \\
\text { differential object marking } & \text { inverse DOM }
\end{array} \\
& z e z z / p A \\
& \text { differential subject marking inverse DSM } \\
& z z z a / p O
\end{aligned}
$$

```
zeaz/pA
split ergative
Australian languages
\(z z a z / p A \quad e z z z / p O\)
differential object marking inverse DOM
\(z e z z / p A\)
differential subject marking inverse DSM
\(z z z z / p A\)
\(z z z a / p O\)
no case marking
\(z z z z / p A\)
```

```
zeaz/pA
split ergative
Australian languages
\(z z a z / p A \quad e z z z / p O\)
differential object marking inverse DOM
English, Dutch, ...
\(z e z z / p A \quad z z z a / p O\)
differential subject marking inverse DSM
\(z z z z / p A\)
\(z z z a / p O\)
no case marking
\(z z z z / p A\)
```

```
zeaz/pA
split ergative
Australian languages
\(z z a z / p A \quad e z z z / p O\)
differential object marking inverse DOM
English, Dutch, ...
\(z e z z / p A\)
\(z z z a / p O\)
differential subject marking
several caucasian languages
\(z z z z / p A\)
\(z z z a / p O\)
no case marking
\(z z z z / p A\)
```

```
zeaz/pA
split ergative
Australian languages
```

$z z a z / p A$
differential object marking English, Dutch, ...
$z e z z / p A$
differential subject marking several caucasian languages
$z z z z / p A$
no case marking Chinese, Thai
$z z z z / p A$
$e z z z / p O$
inverse DOM
-
$z z z a / p O$
inverse DSM
$z z z a / p O$

```
\(z e a z / p A\)
split ergative
Australian languages
\(z z a z / p A \quad e z z z / p O\)
differential object marking inverse DOM
English, Dutch, ...
\(z e z z / p A\)
\(z z z a / p O\)
differential subject marking
several caucasian languages
\(z z z z / p A\)
\(z z z a / p O\)
no case marking
Chinese, Thai
\(z z z z / p A\)
```


Taking stock

- only very few languages are not evolutionary stable in this sense
zzaa: Hungarian, ezza: Parachi, Yazguljami (Iranian languages), eeaa: Wangkumara
- curious asymmetry: if there are two competing stable states, one is common and the other one rare
- similar pattern as with Horn vs. anti-Horn

Alle equilibria are stable, but some equilibria are more stable than others.

Stochastic EGT

Random mutation and stability

- idealizations of standard Evolutionary Game Theory
- populations are (practically) infinite
- mutations rate is constant and low
- better model (Young 1993; Kandori, Mailath and Rob 1993)
- finite population
- mutation is noisy

Consequences of finite population model

- every mutation barrier will occasionally be taken
- no absolute stability
- if multiple Strict Nash Equilibria coexist, system will oscillate between them
- some equilibria are more stable than others
- system will spend most of the time in most robustly stable state
- stochastically stable states

A particular model

- discrete time/finite population version of replicator dynamics
- mutations occur rarely (most generations have no mutants at all)
- if mutation occurs, each individual in this generation has same probability to be a mutant
- mutation frequency and mutation rate equal for both populations
- each strategy is equally likely for a mutant (within its population)

The formulas

$$
\begin{aligned}
& \frac{\Delta x_{i}}{\Delta t}=x_{i}\left(\tilde{u}_{i}-\tilde{u}^{A}\right)+\sum_{j} \frac{Z_{j i}-Z_{i j}}{n} \\
& \frac{\Delta y_{i}}{\Delta t}=y_{i}\left(\tilde{u}_{i}-\tilde{u}^{B}\right)+\sum_{j} \frac{Z_{j i}-Z_{i j}}{n}
\end{aligned}
$$

The formulas

$$
\begin{aligned}
& \frac{\Delta x_{i}}{\Delta t}=x_{i}\left(\tilde{u}_{i}-\tilde{u}^{A}\right)+\sum_{j} \frac{Z_{j i}-Z_{i j}}{n} \\
& \frac{\Delta y_{i}}{\Delta t}=y_{i}\left(\tilde{u}_{i}-\tilde{u}^{B}\right)+\sum_{j} \frac{Z_{j i}-Z_{i j}}{n}
\end{aligned}
$$

- x_{i} : frequency of speaker strategy i

The formulas

$$
\begin{aligned}
& \frac{\Delta x_{i}}{\Delta t}=x_{i}\left(\tilde{u}_{i}-\tilde{u}^{A}\right)+\sum_{j} \frac{Z_{j i}-Z_{i j}}{n} \\
& \frac{\Delta y_{i}}{\Delta t}=y_{i}\left(\tilde{u}_{i}-\tilde{u}^{B}\right)+\sum_{j} \frac{Z_{j i}-Z_{i j}}{n}
\end{aligned}
$$

- x_{i} : frequency of speaker strategy i
- y_{i} : frequency of hearer strategy i

The formulas

$$
\begin{aligned}
& \frac{\Delta x_{i}}{\Delta t}=x_{i}\left(\tilde{u}_{i}-\tilde{u}^{A}\right)+\sum_{j} \frac{Z_{j i}-Z_{i j}}{n} \\
& \frac{\Delta y_{i}}{\Delta t}=y_{i}\left(\tilde{u}_{i}-\tilde{u}^{B}\right)+\sum_{j} \frac{Z_{j i}-Z_{i j}}{n}
\end{aligned}
$$

- x_{i} : frequency of speaker strategy i
- y_{i} : frequency of hearer strategy i
- \tilde{u}_{i} : expected utility of strategy i

$$
\begin{aligned}
& \frac{\Delta x_{i}}{\Delta t}=x_{i}\left(\tilde{u}_{i}-\tilde{u}^{A}\right)+\sum_{j} \frac{Z_{j i}-Z_{i j}}{n} \\
& \frac{\Delta y_{i}}{\Delta t}=y_{i}\left(\tilde{u}_{i}-\tilde{u}^{B}\right)+\sum_{j} \frac{Z_{j i}-Z_{i j}}{n}
\end{aligned}
$$

- x_{i} : frequency of speaker strategy i
- y_{i} : frequency of hearer strategy i
- \tilde{u}_{i} : expected utility of strategy i
- \tilde{u}^{R} : average utility of entire R-population

$$
\begin{aligned}
& \frac{\Delta x_{i}}{\Delta t}=x_{i}\left(\tilde{u}_{i}-\tilde{u}^{A}\right)+\sum_{j} \frac{Z_{j i}-Z_{i j}}{n} \\
& \frac{\Delta y_{i}}{\Delta t}=y_{i}\left(\tilde{u}_{i}-\tilde{u}^{B}\right)+\sum_{j} \frac{Z_{j i}-Z_{i j}}{n}
\end{aligned}
$$

- x_{i} : frequency of speaker strategy i
- y_{i} : frequency of hearer strategy i
- \tilde{u}_{i} : expected utility of strategy i
- \tilde{u}^{R} : average utility of entire R-population
- $Z_{i j}$: random variable; distributed according to the binomial distribution $b\left(p_{i j},\left\lfloor x_{i} n\right\rfloor\right)$
- $p_{i j}$: probability that an i-individual mutates to strategy j

$$
\begin{aligned}
& \frac{\Delta x_{i}}{\Delta t}=x_{i}\left(\tilde{u}_{i}-\tilde{u}^{A}\right)+\sum_{j} \frac{Z_{j i}-Z_{i j}}{n} \\
& \frac{\Delta y_{i}}{\Delta t}=y_{i}\left(\tilde{u}_{i}-\tilde{u}^{B}\right)+\sum_{j} \frac{Z_{j i}-Z_{i j}}{n}
\end{aligned}
$$

- x_{i} : frequency of speaker strategy i
- y_{i} : frequency of hearer strategy i
- \tilde{u}_{i} : expected utility of strategy i
- \tilde{u}^{R} : average utility of entire R-population
- $Z_{i j}$: random variable; distributed according to the binomial distribution $b\left(p_{i j},\left\lfloor x_{i} n\right\rfloor\right)$
- $p_{i j}$: probability that an i-individual mutates to strategy j
- n : population size

A simulation

Stochastic stability

- punctuated equilibria
- long periods of dynamic stability alternate with short transition periods
- in the long run, more time in Horn state (67% vs. 26% in anti-Horn)
- simulation suggests that Horn is stable while anti-Horn is not
- can this be proved?

Analytic considerations

- Simple recipes for finding stochastically stable state in 2×2 games
- not easily extrapolated to larger games
- basic idea:
- calculate the height of the invasion barrier of each ESS
- the ESSs with maximal invasion barrier is stochastically stable

Analytic considerations

- invasion barrier $=$ amount of mutations necessary to push the system into the basin of attraction of another ESS
- Horn \Rightarrow anti-Horn: 50\%
- anti-Horn \Rightarrow Horn: 47.5\%
- Hence:

Horn strategy is the only stochastically stable state

Stochastic evolution of case marking

- $k=0.45$
- competition between $z z a z / p A$ and $e z z z / p O$
- evolution of speaker population:

Stochastic evolution of case marking

- $k=0.45$
- competition between $z z a z / p A$ and $e z z z / p O$
- evolution of hearer population:

Analysis

- invasion barriers:
- differential object marking: 45.2\%
- inverse differential subject marking: 2.06\%

Differential object marking is stochastically stable; inverse differential subject marking is not.

- likewise, differential subject marking is stochastically stable while inverse differential object marking is not.

Stochastically stable states

zeaz/pA
split ergative
Australian languages
$z z a z / p A$
differential object marking
English, Dutch, ...
$z e z z / p A$
differential subject marking
several caucasian languages
$z z z z / p A$
no case marking
Chinese, Thai

Conclusion

- out of $4 \times 16=64$ possible case marking patterns only four are stochastically stable
- vast majority of all languages that fit into this categorization are stochastically stable
- precise numbers are hard to come by though
- linguistic universals can be result of evolutionary pressure in the sense of cultural evolution

