Mathematics for linguists

Gerhard Jäger
gerhard.jaeger@uni-tuebingen.de
Uni Tübingen, WS 2009/2010

October 27, 2009

Sets

Georg Cantor (1845-1918)

"A set is a collection into whole of definite, distinct objects of our intuition or our thought. The objects are called the elements of the set."

- Every well-defined object can be member/element of a set
- Sets can be members of other sets.
- The question of membership must be answerable in principle.
- Sets can be finite or infinite.

Sets

- special sets
- singleton sets (contain exactly one element): $\{a\}$
- the empty set (contains no element): \emptyset (also written as 0 or \{\})
- notational conventions:
- A, B, C, \ldots variables over sets
- a, b, c, \ldots, x, y, z : variable over elements of sets
- $a \in A: a$ is an element of A
- $a \notin A: a$ is not an element of A
- important: since sets can be elements of other sets, we sometimes find expressions like $A \in B$

Ways to describe sets

- four ways to describe sets
- list notation
- separation notation
- recursive definition
- set theoretic operations

Ways to describe sets: List notation

- only applicable to finite sets
- names of the elements are listed between curly brackets
- example:

$$
A=\{\text { the Volga, Nicolas Sarkozy, 16\} }
$$

- can alseo be written as

$$
\begin{gathered}
A=\{\text { Europe's longest river, the French president, the } \\
\text { number of federal states in Germay }\}
\end{gathered}
$$

- order is irrelevant:

$$
A=\{16, \text { the Volga, Nicolas Sarkozy }\}
$$

Ways to describe sets: List notation

- it is also inessential how often an object is named in list notation
$A=\{$ the president of France, Nicolas Sarkozy, the winner of the last presidential election in France, $4^{2}, 16$, the Volga, $\sqrt{256}\}$

Ways to describe sets: separation notation

- Set of all objects of a domain that share a certain property
- domain must also be a set
- domain has to be well-defined, before it can be used to define other sets
- notation:
$\{$ variable \in domain \mid sentence that contains the variable $\}$ or
$\{$ variable \in domain : sentence that contains the variable \}

Ways to describe sets: separation notation

- examples:
- $\{x \in \mathbb{N} \mid x$ is even $\}$
- $\{x \in \mathbb{N} \mid x-10 \geq 0\}$
- $\left\{x \in \mathbb{R} \mid x^{2}=2\right\}$
- domain is frequently omitted if it is clear from the context

Russell's paradox

Why is it so important to always specify a domain when definint a set? The English philosopher Bertrand Russell showed in 2001 that otherwise (via so-called "unconstrained comprehension") it is possible to derive contradictions. For instance, consider:

$$
R=\{x \mid x \notin x\}
$$

Does the following hold:

$$
R \in R ?
$$

Suppose $R \in R$. Then R must have the defining property, i.e. $R \notin R$. On the other hand, if $R \notin R$, then R has the defining property, and thus $R \in R$. In either case, we end up with a contradiction.
It doesn't help to prohibit that a set contains itself. Then R would be the set of all sets, which would have to contain itself after all, so we would end up with a

Russell's paradox

In modern set theory, it is usually assumed that (contra Cantor) not every collection of well-defined object automatically constitutes a set. Whether or not a collection of objects is a set is something which has to be proved. In particular, the collection of all sets is itself not a set.
The four ways to define sets that are discuessed here only produce collections that are, in fact, provably sets.

Ways to describe sets: recursive definition

- consists of three components:

1 a finite list of objects that definitels belong to the set to be defined
2 rules that allow to generate new elements from existing elements
3 statement, that all elements of the set in question can be generated via finitely many application of the rule from (2) to the objects from (1)

Spezifikation von Mengen: rekursive
 Definition

- example:
(1) $4 \in E$

2 If $x \in E$, then $x+2 \in E$.
(3) Nothing else is in E.
alternative Definition via separation:
$\{x \in \mathbb{N} \mid x$ is even and $x \geq 4\}$

- another example:
- Genghis Khan $\in D$
- If $x \in D$ and y is a son of x, then $y \in D$.
- Nothing else is in D.
D is the set which consists of Genghis Khan and all its male descendents.

Set theoretic operations: set union

- $A \cup B$: set unipon (or just "union") of A and B
- set of all objects that are element of A or of B (or both)
- example: Let $K=\{a, b\}, L=\{c, d\}$ and $M=\{b, d\}$

$$
\begin{array}{lll}
K \cup L & =\{a, b, c, d\} & \\
K \cup M & =\{a, b, d\} & \\
L \cup M & =\{b, c, d\} & \\
(K \cup L) \cup M & =K \cup(L \cup M) & =\{a, b, c, d\} \\
K \cup \emptyset & =\{a, b\} & =K \\
L \cup \emptyset & =\{c, d\} & =L
\end{array}
$$

- If A is a set of sets, we write $\bigcup A$ for the union of all elements of A. Instad of $B \cup C$ we could also write $\bigcup\{B, C\}$.

Set theoretic operations: set union

graphical representatio in a Venn diagram

Set theoretic operations: set intersection

- $A \cap B$: intersection of A and B
- set of all objects, that are both member of A and of B
- example: Let $K=\{a, b\}, L=\{c, d\}$ and $M=\{b, d\}$

$$
\begin{array}{lll}
K \cap L & =\emptyset & \\
L \cap M & =\{d\} & =K \\
K \cup K & =\{a, b\} & =\emptyset \\
K \cap \emptyset & =\emptyset \\
(K \cap L) \cap M & =K \cap(L \cap M)=\emptyset \\
K \cap(L \cup M) & =\{b\}
\end{array}
$$

- Intersection can be generalized to all sets of sets as well. $\bigcap A$ is the set of all objects, that are a member of all members of A.

Set theoretic operations: set intersection

representation in Venn diagram

Set theoretic operations: relative complement

- $A-B$ (also written as $A \backslash B$: relative complement of B in A
- set of all objects, that are an element of A, but not of B
- examples: Let $K=\{a, b\}, L=\{c, d\}$ and $M=\{b, d\}$

$$
\begin{aligned}
& K-M=\{a\} \\
& L-K=\{c, d\}=L \\
& M-L=\{b\} \\
& K-\emptyset=\{a, b\}=K \\
& \emptyset-K=\emptyset
\end{aligned}
$$

Set theoretic operations: relative complement

representation in Venn diagram

Set theoretic operations: absolute complement

- A^{\prime} (also written as \bar{A} or $-A$: absolute complement of A
- set of all objects that are not element of A
- only well-defined against the background of a (usually implicit) universe U
- more precise notation: $U-A$

Set theoretic operations: relative complement

representation in Venn diagram

Identity of sets

- the same set can be defined in different ways
- for instance:
(1) $A=\{1,2,3,4,5\}$

2. $A=\{x \in \mathbb{N} \mid x>0$ und $x<6\}$
(3) $1 \in A$; if $x \in A$ and $x<5$, then $x+1 \in A$; nothing else is in A
When do two descriptions define the same set?

Identity of sets

Two sets are identical if and only if they have the same elements.
In other words, $A=\mathrm{B}$ iff every element of A is also an element of B, and every element of B is also an element of A.

Subsets

- $A \subseteq B: A$ is a subset B
- Every element of A is also an element of B.
- B may contain more elements than those from A, but this need not be the case
- $A \nsubseteq B: A$ is not a subset of B.
- $A \subset B: A$ is a proper subset of B
- A is a subset of B, and B contains at least one element that is not in A
- Equivalently:

$$
A \subset B \text { iff } A \subseteq B \text { and } B \nsubseteq A
$$

Subsets

- $A \supseteq B: A$ is a superset of B
- $A \supseteq B$ iff $B \subseteq A$

Subsets

Beispiele:
(1) $\{a, b, c\} \subseteq\{s, b, a, e, g, i, c\}$

2 $\{a, b, j\} \nsubseteq\{s, b, a, e, g, i, c\}$
$3\{a, b, c\} \subset\{s, b, a, e, g, i, c\}$
(4) $\emptyset \subset\{a\}$

5 5 $\{a,\{a\}\} \subseteq\{a, b,\{a\}\}$
(6) $\{a\} \nsubseteq\{\{a\}\}$

7 $\{\{a\}\} \nsubseteq\{a\}$
$8 \emptyset \subseteq A$ for arbitrary sets A
9 but: $\{\emptyset\} \nsubseteq\{a\}$

Subsets

Note:

The element-of relation and the subset-relation have to be clearly distinguished!
for instance:

$$
\begin{aligned}
& a \in\{a\} \\
& a \nsubseteq\{a\}
\end{aligned}
$$

or

$$
\begin{aligned}
& \{a\} \subseteq\{a, b, c\} \\
& \{a\} \notin\{a, b, c\}
\end{aligned}
$$

Subsets

Note:

Subset relation is transitive:
If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Set theoretic operations: power set

- $\wp(A)$ (sometimes written $\operatorname{POW}(A), \operatorname{Pot}(A)$ or 2^{A}): power set of A
- set of all subsets A
- exmples:

$$
\begin{aligned}
& 1 \quad \wp(\{a, b, c\})=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\} \\
& 2 \wp(\emptyset)=\{\emptyset \emptyset\} \\
& 3 \wp(\wp(\emptyset))=\{\emptyset,\{\emptyset\}\} \\
& 48(\{a\})=\{\emptyset,\{a\}\}
\end{aligned}
$$

- If A is finite and has n elements, then $\wp(A)$ always has 2^{n} elements.
- For all sets $A: \emptyset \in \wp(A)$ and $A \in \wp(A)$.

Cardinality of sets

- $|A|$ (sometimes also written als $\#(A)$): cardinality of A
- for empty sets: $|A|$ is the number of elements of A
- examples:
(1) $|\emptyset|=0$
(2) $|\{a\}|=1$
(3) $|\{\emptyset\}|=1$
(4) $|\{a,\{b, c, d\}\}|=2$
- cardinality is also defined for infinite sets
- $|A|=|B|$ iff there is a one-one mapping between A and B. (The notion of a one-one mapping will be introduced later in this course.)
- Not all infinite sets have the same cardinality

Set theoretic laws

1) idempotence laws:
(1) $A \cup A=A$
2) $A \cap A=A$

2 commutativity laws:
(1) $A \cup B=B \cup A$
(2) $A \cap B=B \cap A$

3 associativity laws:
(1) $(A \cup B) \cup C=A \cup(B \cup C)$
$2(A \cap B) \cap C=A \cap(B \cap C)$
4 distributivity laws:
(1) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
2. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

Set theoretic laws

1 identity laws:
(1) $A \cup \emptyset=A$
2) $A \cup U=U$

3 $A \cap \emptyset=\emptyset$
(4) $A \cap U=A$

2 complement laws:
(1) $A \cup A^{\prime}=U$
2) $\left(A^{\prime}\right)^{\prime}=A$
(3) $A \cap A^{\prime}=\emptyset$
(4) $A-B=A \cap B^{\prime}$
(3) De Morgan's laws:

1) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

2 $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
(4) consistency principle:
(1) $A \subseteq B$ gdw. $A \cup B=B$
(2) $A \subseteq B$ gdw. $A \cap B=A$

