
Mathematics for linguists

Gerhard Jäger
gerhard.jaeger@uni-tuebingen.de

Uni Tübingen, WS 2009/2010

November 26, 2009

1/13



The pumping lemma

• Let L be an infinite regular language over a finite alphabete
Σ.

• There is a NFA M that accepts L.

• There is a number n such that M has n states.

• Almost all words in L consist of more than n letters.
• Let ~x ∈ L, with l(~x) > n.
• There is a run of M that recognizes ~x.
• Since M has n states and l(~x) > n, at least one state of M is

visited more than once. Let q be the state that is visited more
than once.

• ~x can be represented as ~y · ~z · ~w, such that
• between the initial state and q the string ~y is accepted,
• between the first and the second visit of q the string ~z is

accepted, and
• between the second visit of q and the final state, the string ~w

is accepted.

2/13



The pumping lemma

• Therefore:
• the loop from q to q, during which ~x is accepted, can be

repeated arbitrarily many times.

• Hence: ~y · ~zi · ~w ∈ L, for arbitrary i ≥ 0.

3/13



The pumping lemma

These considerations hold for arbitrary infinite regular languages.

Theorem

Let L be an infinite regular language over the alphabet Σ. Then
there is a number n, such that all words ~x ∈ L with l(~x) > n can
be decomposed into ~x = ~y · ~z · ~w, such that the following facts
hold:

1 l(~z) ≥ 1,

2 l(~y) + l(~z) ≤ n, and

3 for all i ∈ N: ~y · ~zi · ~w ∈ L.

4/13



Applications of the pumping lemma

The pumping lemma is useful if one wants to prove that a given
language is not regular.

• Example: L = {ambm|m > 0} is not regular.

• Proof:
• Suppose L is regular.
• Then there is an n with the properties that are mentioned in

the pumping lemma (the number of of states of the
automaton that accepts L).

• anbn ∈ L.
• anbn = ~x · ~y · ~z, with l(~x · ~y) ≤ n, l(~y) ≥ 1, and ~x · ~z ∈ L.
• ~y = aj , for some j ≥ 1.
• Hence ~x · ~z = an−jbn ∈ L, which is a contradiction to the

definition of L.
• Hence L is not regular.

5/13



Applications of the pumping lemma

• Example: L = {anbm|m ≥ n > 0} is not regular.

• Proof:
• Suppose L is regular.
• Then there is an n > 0 with the properties that are mentioned

in the pumping lemma.
• anbn ∈ L.
• anbn = ~x · ~y · ~z, with l(~x · ~y) ≤ n, l(~y) ≥ 1, and ~x · ~y~z ∈ L.
• ~y = aj , for some j ≥ 1.
• Hence ~x · ~y(n+1)·m · ~z ∈ L, and this is a contradiction to the

definition of L.
• Hence L is not regular.

6/13



Applications of the pumping lemma

• In a similar way it is possible to show that for a Σ with at
least two elements, the following languages are not regular:

• {~w · ~w|~w ∈ Σ∗} (the “copy language”)
• {~w · ~wR|~w ∈ Σ∗} (the “mirror language” or “palindrome

language”)

• Somewhat more complex:

L = {~x ∈ {a, b}∗|number of a in ~x = number of b in ~x}

7/13



Applications of the pumping lemma

To prove that L is not regular, the following insight is important:

Theorem

If L1 and L2 are regular, then L1 ∩ L2 is regular.

First we show that the complement of a regular language is also
regular. This is almost obvious: If a DFA M accepts L, then you
only have to turn the non-final states into final states and vice
versa to get a DFA that accepts the complement L = Σ∗ − L.
During the last lecture it was shown that the union of two regular
languages is also regular.
Thus, if L1 and L2 are regular, then L1 and L2 are also regular,

and therefore alsoe L1 ∩ L2, and therefore alsoe L1 ∩ L2.
According to de Morgan’s law, this equals L1 ∩ L2.

8/13



Applications of the pumping lemma

• Proof that
L = {~x ∈ {a, b}∗|number of a in ~x = number of b in ~x} is
not regular:

• a∗b∗ is regular, because this language can be described by a
regular expression.

• Suppose L is regular. Then L ∩ a∗b∗ = {anbn|n ≥ 0} must
also be regular.

• It was shown above that this language is not regular. Hence L
is not regular either.

9/13



Is English regular?

With the help of the pumping lemma it is possible to show that
natural languages are not regular. One possible argument for
English runs as follows:

• It is possible to construct arbitrarily long sentences in English
with the expressions “either ... or ...”:

Either it rains or it snows.
Either John believes that either it rains or it snows, or the sun is

shining.
Either it seems that either John believes that either it rains or it

snows, or the sun is shining, or today is Thursday.
...

10/13



Is English regular?

• For every either in an English sentence, there is a
corresponding or. The number of occurrences of or is thus at
least as large as the number of occurrences of either.

• Regular languages are closed under the deletion of single
elements from Σ: If I delete all occurrences of a given symbol
— let’s say a — in all words of a regular language L, the
resulting language is again regular. (Proof: In a regular
expression that describes L, replace all occurrences of a by ε.)

11/13



Is English regular?

• Suppose English is regular. More specifically, this means that
the set E of all grammatical sentences of English is a regular
language over the alphabet Σ (= the set of all morphemes of
English).

• Then the language E′, that is the result of deleting all
morphemes except either and or in all English sentences, is
also regular.

• E′ = {~x ∈ {either, or}∗|number of eithers in ~x ≤
number of ors in ~x}

12/13



Is English regular?

• either∗or∗ is a regular language.

• Hence either∗or∗ ∩ E′ = {eithernorm|m ≥ n} is regular.

• Since we proved above that this language is not regular, we
have derived a contradiction. So we proved that the original
assumption — that E is regular — must be false.

Recursive constructions like the English either ... or ... can
probably be found in all natural languages.1 Hence Type-3
grammars are insufficient to describe natural languages.

1There are claims that the South American language Pirahã does not have
such constructions, but this is heavily contested; see
http://de.wikipedia.org/wiki/Piraha.

13/13


