Mathematics for linguists

WS 2009/2010 University of Tübingen

December 10, 2009

Gerhard Jäger

Mathematics for linguists - p. 1

Translation English \Rightarrow **statement logic**

motivation for translation:

- English as object-language: translation admits modeling of the semantics of English using the means of logic
- 2. English as meta-language: translation helps to make the notion of the valid argument precise

A statement *A* is an adequate translation of a statement *A*' if and only if *A* and *A*' have the same truth conditions.

Translation

- translation of an English statement A consists of
 - a statement A' of statement logic, and
 - conditions for the valuation V of statement logic
- a good translation of A is
 - as poor in structure as possible, and
 - as similar in structure as possible to A

- example:
 - English:
 - (1) Paul is not smart.
 - translation:
 - (2) a. $\neg p$ b. p: Paul is smart.

rule of thumb: If an English statement that contains "not" (or "n't") can be paraphrased without problems by a formulation using "it is not the case that", then A can be translated into a negated formula.

- paraphrase test is also useful for other English expressions for negation:
 - English:
 - (3) Franz Beckenbauer owns *no* cars.
 - paraphrase:
 - (4) It is not the case that Franz Beckenbauer owns a car.
 - translation:
 - (5) a.¬*p*
 - **b.** p : Franz Beckenbauer owns a car.

- Further examples:
- (6) a. *Nobody* is smarter than John.
 - b. It is not the case that somebody is smarter than John.
 - c. $\neg p/p$: Somebody is smarter than John.
- (7) a. Fritz donated *nothing*.
 b. It is not the case that Fritz donated something.
 c. ¬p/p : Fritz donated something.
- (8) a. *Neither* John *nor* Peter are in Tübingen.
 b. It is not the case that John or Peter is in Tübingen.
 c. ¬p/p : John or Peter is in Tübingen.

- (9) a. John is *un*reasonable.
 - b. It is not the case that John is reasonable.
 - c. $\neg p/p$: John is reasonable.

but:

- (10) a. John unloads the truck.
 - b. \neq It is not the case that John loads the truck.
 - c. (correct translation:) p/p : John unloads the truck.

- (11) a. John is blond and John is six feet tall.
 - **b.** $p \wedge q$
 - c. p: John is blond.
 - d. q : John is six feet tall.
- (12) a. John is blond and six feet tall. b. (paraphrase:) John is blond and John is six feet tall. c. $p \land q$
 - d. p : John is blond.
 - e. q : John is six feet tall.

- (13) a. John and Paul are good swimmers.
 - b. John is a good swimmer and Paul is a good swimmer.
 - C. $p \wedge q$
 - d. p : John is a good swimmer. q : Paul is a good swimmer.
 - rule of thumb: If a statement A that contains "and" can be paraphrased by a sentence where "and" connects two clauses, then A can be translated as a conjunction.

but:

- (14) a. John and Gerda are married.
 - b. \neq John is married and Gerda is married.
 - c. (correct translation:) *p*
 - d. p : John and Gerda are married.

further ways to express conjunctive statements:

- (15) a. John is *both* stupid *and* lazy. b. John is stupid and John is lazy. c. $p \land q$ d. p: John is stupid. q: John is lazy.
- (16) a. John is not stupid, *but* he is lazy.
 b. John is not stupid and John is lazy.
 c. ¬p ∧ q
 d. p : John is stupid. q : John is lazy.

- (17) a. *Even though* Helga is engaged to Paul, she does not love him.
 - b. Helga is engaged to Paul, and Helga does not love Paul.
 - C. $p \land \neg q$
 - d. p : Helga is engaged to Paul. q : Helga loves Paul.

Translation: disjunction

- regarding the problem of exclusive vs. inclusive reading of "or": see last lecture
- apart from that, disjunction relates to "or" as conjunction to "and"
- (18) a. John is blond or John is six feet tall.
 - **b.** $p \lor q$
 - c. p : John is blond.
 - d. q : John is six feet tall.

Translation: disjunction

(19) a. John is blond or six feet tall.

- b. (paraphrase:) John is blond or John is six feet tall.
- C. $p \lor q$
- d. p : John is blond.
- e. q : John is six feet tall.
- (20) a. John or Paul is a good swimmer.
 - b. John is a good swimmer or Paul is a good swimmer.
 - C. $p \lor q$
 - d. p : John is a good swimmer. q : Paul is a good swimmer.

Translation: implication

- There is no real counterpart to implication in English.
- Some grammatical constructions can approximately translated by implications.
- rule of thumb: Suppose *A* is an English statement which might possibly be translated as an implication $\varphi \rightarrow \psi$. To test the adequacy of this translation, it is important to understand under what conditions *A* is false. If the translation is correct, then under these very conditions, φ must be true and ψ false.

Translation: implication

- (21) a. If John is the father of Paul, then John is older than Paul.
 - **b.** $p \rightarrow q$
 - c. p : John is the father of Paul.
 - d. q : John is older than Paul.
- (22) a. John will come to the party only if Helga comes. b. $p \rightarrow q$
 - c. p: John will come to the party.
 - d. q : Helga will come to the party.

Translation: implication

(23) a. That x is even is a *necessary condition* that x is divisible by 4.

- b. $p \rightarrow q$
- c. p:x is divisible .
- d. q: x is even.
- (24) a. That x is divisible by 4 is a *sufficient condition* that x is even.
 - **b.** $p \rightarrow q$
 - c. p: x is divisible by 4.
 - d. q:x is even.

Translation: Equivalence

- (25) a. John comes to the party if and only if Paul comes. b. $p \leftrightarrow q$
 - c. p : John comes to the party.
 - d. q : Paul comes to the party.
- (26) a. John comes to the party just in case Paul comes. b. $p \leftrightarrow q$
 - c. p : John comes to the party.
 - d. q : Paul comes to the party.

Translation: equivalenz

- (27) a. That the last digit in the decimal representation of x is 0 is a *necessary and sufficient condition* that x is divisible by 10.
 - **b.** $p \leftrightarrow q$
 - c. p: The last digit in the decimal representation of x is 0.
 - d. q: x is divisible by 10.

Definition 3 (Tautology) A formula of statement logic φ is a **tautology** of statement logic, formally written as

 $\Rightarrow \varphi$

if and only if it holds for all valuations V:

 $V(\varphi) = 1$

- Tautologies are called *logically true*.
- Examples for tautologies:

$$p \vee \neg p, \neg (p \wedge \neg p), p \to q \to p, p \to \neg \neg p, p \to p \vee q, \dots$$

Whether or not a formula is logically true can be decided with the help of truth tables. Logically true formulas are true under each valuation function, i.e. in each row.

	p	q	$ q \rightarrow p$	$p \to q \to p$
V_1	1	1	1	1
V_2	1	0	1	1
V_3	0	1	0	1
V_4	0	0	1	1

Definition 5 (Contradiction) A formula φ is a **contradiction** of statement logic if and only if it holds for all valuation functions V:

$$V(\varphi) = 0$$

- Contradictions are called *logically false*.
- Examples for contradictions:

$$p \wedge \neg p, \neg (p \vee \neg p), (p \to \neg p) \wedge p, p \leftrightarrow \neg p, \ldots$$

Whether or not a formula is logically false can also be determined by using truth tables. Logically false formulas are false under each valuation function, i.e. in each row.

Tautologies and contradictions

Theorem 3 If φ is a tautology, then $\neg \varphi$ is a contradiction. *Proof:* Suppose the premise is correct and φ is a tautology. Let *V* be an arbitrary valuation function. By assumption, it holds that

$$V(\varphi) = 1$$

From this it follows that

$$V(\neg\varphi) = 0$$

due to the semantics of negation. Since we did not make any specific assumption about V, it holds for any V that $V(\neg \varphi) = 0$. Hence, by definition, $\neg \varphi$ is a contradiction.

Tautologies and contradictions

Theorem 5 If φ is a contradiciton, then $\neg \varphi$ is a tautology. *Proof:* Suppose the premise is correct and φ is a contradiction. Let *V* be an arbitrary valuation function. By assumption, it holds that

$$V(\varphi) = 0$$

From this it follows that

$$V(\neg \varphi) = 1$$

due to the semantics of negation. Since we did not make any specific assumption about V, it holds for any V that $V(\neg \varphi) = 0$. Hence, by definition, $\neg \varphi$ is a tautology.

Definition 7 (Logical equivalence) Two formulas φ and ψ are **logically equivalent**, formally written as

 $\varphi \Leftrightarrow \psi$

if and only if for all valuation functions V *it holds that:*

 $V(\varphi) = V(\psi)$

- Note: "Logical equivalence" is a meta-linguistic notion, while "equivalence" in the sense of ↔ is an operator of the object language.
- Logical equivalence can be decided with the help of truth tables as well.

	p	q	$\mid r \mid$	$p \land q$	$q \wedge r$	$p \wedge (q \wedge r)$	$(p \land q) \land r$
V_1	1	1	1				

	p	q	r	$p \wedge q$	$q \wedge r$	$p \wedge (q \wedge r)$	$(p \wedge q) \wedge r$
V_1	1	1	1	1	1	1	1
V_2	1	1	0	1	0	0	0
V_3	1	0	1	0	0	0	0
V_4	1	0	0	0	0	0	0
V_5	0	1	1	0	1	0	0
V_6	0	1	0	0	0	0	0
V_7	0	0	1	0	0	0	0
V_8	0	0	0	0	0	0	0

Hence:

 $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

Theorem 7 φ and ψ are logically equivalent if and only if $\varphi \leftrightarrow \psi$ is a tautology. *Proof:*

■ Forward direction: Suppose $\varphi \Leftrightarrow \psi$. Let *V* be an arbitrary valuation function. By assumption, it holds that $V(\varphi) = V(\psi)$. Hence either $V(\varphi) = V(\psi) = 0$ or $V(\varphi) = V(\psi) = 1$. In either case, it follows from the semantics of the equivalence that $V(\varphi \leftrightarrow \psi) = 1$.

- Backward direction: Suppose $\varphi \leftrightarrow \psi$ is a tautology. Let V be an arbitrary valuation function. We have to distinguish two cases:
 - $V(\varphi) = 1$. It follows from the semantics of equivalence that $V(\psi) = 1$.
 - $V(\varphi) = 0$. It follows from the semantics of equivalence that $V(\psi) = 0$.

In both cases it holds that $V(\varphi) = V(\psi)$. Hence φ and ψ are logically equivalent.