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Translation English ⇒ statement logic

motivation for translation:
1. English as object-language: translation admits

modeling of the semantics of English using the
means of logic

2. English as meta-language: translation helps to make
the notion of the valid argument precise

A statement A is an adequate translation of a statement
A′ if and only if A and A′ have the same truth
conditions.
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Translation

translation of an English statement A consists of
a statement A′ of statement logic, and
conditions for the valuation V of statement logic

a good translation of A is
as poor in structure as possible, and
as similar in structure as possible to A
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Translation: negation

example:
English:

(1) Paul is not smart.
translation:

(2) a.¬p
b.p : Paul is smart.

rule of thumb: If an English statement that contains
“not” (or “n’t”) can be paraphrased without problems by
a formulation using “it is not the case that”, then A can
be translated into a negated formula.
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Translation: negation

paraphrase test is also useful for other English
expressions for negation:

English:
(3) Franz Beckenbauer owns no cars.

paraphrase:
(4) It is not the case that Franz Beckenbauer owns a

car.
translation:

(5) a.¬p
b.p : Franz Beckenbauer owns a car.
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Translation: negation

Further examples:

(6) a. Nobody is smarter than John.
b. It is not the case that somebody is smarter than

John.
c. ¬p/p : Somebody is smarter than John.

(7) a. Fritz donated nothing.
b. It is not the case that Fritz donated something.
c. ¬p/p : Fritz donated something.

(8) a. Neither John nor Peter are in Tübingen.
b. It is not the case that John or Peter is in Tübingen.
c. ¬p/p : John or Peter is in Tübingen.

Mathematics for linguists – p. 6



Translation: negation

(9) a. John is unreasonable.
b. It is not the case that John is reasonable.
c. ¬p/p : John is reasonable.

but:

(10) a. John unloads the truck.
b. 6= It is not the case that John loads the truck.
c. (correct translation:) p/p : John unloads the truck.
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Translation: conjunction

(11) a. John is blond and John is six feet tall.
b. p ∧ q
c. p : John is blond.
d. q : John is six feet tall.

(12) a. John is blond and six feet tall.
b. (paraphrase:) John is blond and John is six feet tall.
c. p ∧ q
d. p : John is blond.
e. q : John is six feet tall.
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Translation: conjunction

(13) a. John and Paul are good swimmers.
b. John is a good swimmer and Paul is a good

swimmer.
c. p ∧ q
d. p : John is a good swimmer. q : Paul is a good

swimmer.

rule of thumb: If a statement A that contains “and” can
be paraphrased by a sentence where “and” connects
two clauses, then A can be translated as a conjunction.
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Translation: conjunction

but:
(14) a. John and Gerda are married.

b. 6= John is married and Gerda is married.
c. (correct translation:) p
d. p : John and Gerda are married.
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Translation: conjunction

further ways to express conjunctive statements:

(15) a. John is both stupid and lazy.
b. John is stupid and John is lazy.
c. p ∧ q
d. p : John is stupid. q : John is lazy.

(16) a. John is not stupid, but he is lazy.
b. John is not stupid and John is lazy.
c. ¬p ∧ q

d. p : John is stupid. q : John is lazy.
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Translation: conjunction

(17) a. Even though Helga is engaged to Paul, she does not
love him.

b. Helga is engaged to Paul, and Helga does not love
Paul.

c. p ∧ ¬q

d. p : Helga is engaged to Paul. q : Helga loves Paul.
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Translation: disjunction

regarding the problem of exclusive vs. inclusive reading
of “or”: see last lecture

apart from that, disjunction relates to “or” as conjunction
to “and”

(18) a. John is blond or John is six feet tall.
b. p ∨ q
c. p : John is blond.
d. q : John is six feet tall.

Mathematics for linguists – p. 13



Translation: disjunction

(19) a. John is blond or six feet tall.
b. (paraphrase:) John is blond or John is six feet tall.
c. p ∨ q
d. p : John is blond.
e. q : John is six feet tall.

(20) a. John or Paul is a good swimmer.
b. John is a good swimmer or Paul is a good swimmer.
c. p ∨ q
d. p : John is a good swimmer. q : Paul is a good

swimmer.
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Translation: implication

There is no real counterpart to implication in English.

Some grammatical constructions can approximately
translated by implications.

rule of thumb: Suppose A is an English statement
which might possibly be translated as an implication
ϕ→ ψ. To test the adequacy of this translation, it is
important to understand under what conditions A is
false. If the translation is correct, then under these very
conditions, ϕ must be true and ψ false.
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Translation: implication

(21) a. If John is the father of Paul, then John is older than
Paul.

b. p→ q

c. p : John is the father of Paul.
d. q : John is older than Paul.

(22) a. John will come to the party only if Helga comes.
b. p→ q

c. p : John will come to the party.
d. q : Helga will come to the party.
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Translation: implication

(23) a. That x is even is a necessary condition that x is
divisible by 4.

b. p→ q

c. p : x is divisible .
d. q : x is even.

(24) a. That x is divisible by 4 is a sufficient condition that x
is even.

b. p→ q

c. p : x is divisible by 4.
d. q : x is even.
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Translation: Equivalence

(25) a. John comes to the party if and only if Paul comes.
b. p↔ q

c. p : John comes to the party.
d. q : Paul comes to the party.

(26) a. John comes to the party just in case Paul comes.
b. p↔ q

c. p : John comes to the party.
d. q : Paul comes to the party.
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Translation: equivalenz

(27) a. That the last digit in the decimal representation of x
is 0 is a necessary and sufficient condition that x is
divisible by 10.

b. p↔ q

c. p : The last digit in the decimal representation of x is
0.

d. q : x is divisible by 10.
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Tautologies

Definition 3 (Tautology) A formula of statement logic ϕ is
a tautology of statement logic, formally written as

⇒ ϕ

if and only if it holds for all valuations V :

V (ϕ) = 1
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Tautologies

Tautologies are called logically true.

Examples for tautologies:

p ∨ ¬p,¬(p ∧ ¬p), p→ q → p, p→ ¬¬p, p→ p ∨ q, ...

Whether or not a formula is logically true can be
decided with the help of truth tables. Logically true
formulas are true under each valuation function, i.e. in
each row.
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Tautologies

p q q → p p→ q → p

V1 1 1
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Tautologies

p q q → p p→ q → p

V1 1 1 1
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Tautologies

p q q → p p→ q → p

V1 1 1 1 1

V2 1 0 1 1

V3 0 1 0 1

V4 0 0 1 1

Mathematics for linguists – p. 22



Contradictions

Definition 5 (Contradiction) A formula ϕ is a
contradiction of statement logic if and only if it holds for all
valuation functions V :

V (ϕ) = 0

Contradictions are called logically false.

Examples for contradictions:

p ∧ ¬p,¬(p ∨ ¬p), (p→ ¬p) ∧ p, p↔ ¬p, ...

Whether or not a formula is logically false can also be
determined by using truth tables. Logically false
formulas are false under each valuation function, i.e. in
each row.
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Contradictions

p ¬p p→ ¬p (p→ ¬p) ∧ p

V1 1
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Contradictions

p ¬p p→ ¬p (p→ ¬p) ∧ p

V1 1 0
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Contradictions

p ¬p p→ ¬p (p→ ¬p) ∧ p

V1 1 0 0
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Contradictions

p ¬p p→ ¬p (p→ ¬p) ∧ p

V1 1 0 0 0

V2 0 1 1 0
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Tautologies and contradictions

Theorem 3 If ϕ is a tautology, then ¬ϕ is a contradiction.
Proof: Suppose the premise is correct and ϕ is a tautology.
Let V be an arbitrary valuation function. By assumption, it
holds that

V (ϕ) = 1

From this it follows that

V (¬ϕ) = 0

due to the semantics of negation. Since we did not make
any specific assumption about V , it holds for any V that
V (¬ϕ) = 0. Hence, by definition, ¬ϕ is a contradiction. ⊣
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Tautologies and contradictions

Theorem 5 If ϕ is a contradiciton, then ¬ϕ is a tautology.
Proof: Suppose the premise is correct and ϕ is a
contradiction. Let V be an arbitrary valuation function. By
assumption, it holds that

V (ϕ) = 0

From this it follows that

V (¬ϕ) = 1

due to the semantics of negation. Since we did not make
any specific assumption about V , it holds for any V that
V (¬ϕ) = 0. Hence, by definition, ¬ϕ is a tautology. ⊣
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Logical equivalence

Definition 7 (Logical equivalence) Two formulas ϕ and ψ
are logically equivalent, formally written as

ϕ⇔ ψ

if and only if for all valuation functions V it holds that:

V (ϕ) = V (ψ)

Note: “Logical equivalence” is a meta-linguistic notion,
while “equivalence” in the sense of ↔ is an operator of
the object language.

Logical equivalence can be decided with the help of
truth tables as well.
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Logical equivalence

p q r p ∧ q q ∧ r p ∧ (q ∧ r) (p ∧ q) ∧ r

V1 1 1 1
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Logical equivalence

p q r p ∧ q q ∧ r p ∧ (q ∧ r) (p ∧ q) ∧ r

V1 1 1 1 1
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Logical equivalence

p q r p ∧ q q ∧ r p ∧ (q ∧ r) (p ∧ q) ∧ r

V1 1 1 1 1 1
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Logical equivalence

p q r p ∧ q q ∧ r p ∧ (q ∧ r) (p ∧ q) ∧ r

V1 1 1 1 1 1 1
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Logical equivalence

p q r p ∧ q q ∧ r p ∧ (q ∧ r) (p ∧ q) ∧ r

V1 1 1 1 1 1 1 1

V2 1 1 0 1 0 0 0

V3 1 0 1 0 0 0 0

V4 1 0 0 0 0 0 0

V5 0 1 1 0 1 0 0

V6 0 1 0 0 0 0 0

V7 0 0 1 0 0 0 0

V8 0 0 0 0 0 0 0

Hence:
(p ∧ q) ∧ r ⇔ p ∧ (q ∧ r)
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Logical equivalence

Theorem 7 ϕ and ψ are logically equivalent if and only if
ϕ↔ ψ is a tautology.
Proof:

Forward direction: Suppose ϕ⇔ ψ. Let V be an
arbitrary valuation function. By assumption, it holds that
V (ϕ) = V (ψ). Hence either V (ϕ) = V (ψ) = 0 or
V (ϕ) = V (ψ) = 1. In either case, it follows from the
semantics of the equivalence that V (ϕ↔ ψ) = 1. ⊣
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Logical equivalence

Backward direction: Suppose ϕ↔ ψ is a tautology. Let
V be an arbitrary valuation function. We have to
distinguish two cases:

V (ϕ) = 1. It follows from the semantics of
equivalence that V (ψ) = 1.
V (ϕ) = 0. It follows from the semantics of
equivalence that V (ψ) = 0.

In both cases it holds that V (ϕ) = V (ψ). Hence ϕ and ψ
are logically equivalent. ⊣
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