Mathematics for linguists

WS 2009/2010
University of Tübingen

December 10, 2009

Gerhard Jäger

Translation English \Rightarrow statement logic

- motivation for translation:

1. English as object-language: translation admits modeling of the semantics of English using the means of logic
2. English as meta-language: translation helps to make the notion of the valid argument precise

A statement A is an adequate translation of a statement A^{\prime} if and only if A and A^{\prime} have the same truth conditions.

Translation

- translation of an English statement A consists of
- a statement A^{\prime} of statement logic, and
- conditions for the valuation V of statement logic
- a good translation of A is
- as poor in structure as possible, and
- as similar in structure as possible to A

Translation: negation

- example:
- English:
(1) Paul is not smart.
- translation:
(2) a. $\neg p$
b. p : Paul is smart.
- rule of thumb: If an English statement that contains "not" (or "n't") can be paraphrased without problems by a formulation using "it is not the case that", then A can be translated into a negated formula.

Translation: negation

- paraphrase test is also useful for other English expressions for negation:
- English:
(3) Franz Beckenbauer owns no cars.
- paraphrase:
(4) It is not the case that Franz Beckenbauer owns a car.
- translation:
(5) \quad a. $\neg p$
b. p : Franz Beckenbauer owns a car.

Translation: negation

- Further examples:
(6) a. Nobody is smarter than John.
b. It is not the case that somebody is smarter than John.
c. $\neg p / p$: Somebody is smarter than John.
(7) a. Fritz donated nothing.
b. It is not the case that Fritz donated something.
c. $\neg p / p$: Fritz donated something.
(8) a. Neither John nor Peter are in Tübingen.
b. It is not the case that John or Peter is in Tübingen.
c. $\neg p / p$: John or Peter is in Tübingen.

Translation: negation

(9) a. John is unreasonable.
b. It is not the case that John is reasonable.
c. $\neg p / p$: John is reasonable.

but:

(10) a. John unloads the truck.
b. \neq It is not the case that John loads the truck.
c. (correct translation:) p / p : John unloads the truck.

Translation: conjunction

(11) a. John is blond and John is six feet tall.
b. $p \wedge q$
c. $p:$ John is blond.
d. q : John is six feet tall.
(12) a. John is blond and six feet tall.
b. (paraphrase:) John is blond and John is six feet tall.
c. $p \wedge q$
d. $p:$ John is blond.
e. q : John is six feet tall.

Translation: conjunction

(13) a. John and Paul are good swimmers.
b. John is a good swimmer and Paul is a good swimmer.
C. $p \wedge q$
d. p : John is a good swimmer. q : Paul is a good swimmer.

- rule of thumb: If a statement A that contains "and" can be paraphrased by a sentence where "and" connects two clauses, then A can be translated as a conjunction.

Translation: conjunction

but:

(14) a. John and Gerda are married.
b. \neq John is married and Gerda is married.
c. (correct translation:) p
d. p : John and Gerda are married.

Translation: conjunction

- further ways to express conjunctive statements:
(15) a. John is both stupid and lazy.
b. John is stupid and John is lazy.
c. $p \wedge q$
d. p : John is stupid. q : John is lazy.
(16) a. John is not stupid, but he is lazy.
b. John is not stupid and John is lazy.
c. $\neg p \wedge q$
d. p : John is stupid. q : John is lazy.

Translation: conjunction

(17) a. Even though Helga is engaged to Paul, she does not love him.
b. Helga is engaged to Paul, and Helga does not love Paul.
C. $p \wedge \neg q$
d. p : Helga is engaged to Paul. q : Helga loves Paul.

Translation: disjunction

- regarding the problem of exclusive vs. inclusive reading of "or": see last lecture
- apart from that, disjunction relates to "or" as conjunction to "and"
(18) a. John is blond or John is six feet tall.
b. $p \vee q$
c. p : John is blond.
d. q : John is six feet tall.

Translation: disjunction

(19) a. John is blond or six feet tall.
b. (paraphrase:) John is blond or John is six feet tall.
C. $p \vee q$
d. $p:$ John is blond.
e. q : John is six feet tall.
(20) a. John or Paul is a good swimmer.
b. John is a good swimmer or Paul is a good swimmer.
c. $p \vee q$
d. p : John is a good swimmer. q : Paul is a good swimmer.

Translation: implication

- There is no real counterpart to implication in English.
- Some grammatical constructions can approximately translated by implications.
- rule of thumb: Suppose A is an English statement which might possibly be translated as an implication $\varphi \rightarrow \psi$. To test the adequacy of this translation, it is important to understand under what conditions A is false. If the translation is correct, then under these very conditions, φ must be true and ψ false.

Translation: implication

(21) a. If John is the father of Paul, then John is older than Paul.
b. $p \rightarrow q$
c. p : John is the father of Paul.
d. $q:$ John is older than Paul.
(22) a. John will come to the party only if Helga comes.
b. $p \rightarrow q$
c. p : John will come to the party.
d. q : Helga will come to the party.

Translation: implication

(23) a. That x is even is a necessary condition that x is divisible by 4.
b. $p \rightarrow q$
c. $p: x$ is divisible.
d. $q: x$ is even.
(24) a. That x is divisible by 4 is a sufficient condition that x is even.
b. $p \rightarrow q$
c. $p: x$ is divisible by 4 .
d. $q: x$ is even.

Translation: Equivalence

(25) a. John comes to the party if and only if Paul comes.
b. $p \leftrightarrow q$
c. p : John comes to the party.
d. q : Paul comes to the party.
(26) a. John comes to the party just in case Paul comes.
b. $p \leftrightarrow q$
c. p : John comes to the party.
d. q : Paul comes to the party.

Translation: equivalenz

(27) a. That the last digit in the decimal representation of x is 0 is a necessary and sufficient condition that x is divisible by 10 .
b. $p \leftrightarrow q$
c. p : The last digit in the decimal representation of x is 0.
d. $q: x$ is divisible by 10 .

Tautologies

Definition 3 (Tautology) A formula of statement logic φ is a tautology of statement logic, formally written as

$$
\Rightarrow \varphi
$$

if and only if it holds for all valuations V :

$$
V(\varphi)=1
$$

Tautologies

- Tautologies are called logically true.
- Examples for tautologies:

$$
p \vee \neg p, \neg(p \wedge \neg p), p \rightarrow q \rightarrow p, p \rightarrow \neg \neg p, p \rightarrow p \vee q, \ldots
$$

- Whether or not a formula is logically true can be decided with the help of truth tables. Logically true formulas are true under each valuation function, i.e. in each row.

Tautologies

$$
\begin{array}{l|l|l||l|l}
& p & q & q \rightarrow p & p \rightarrow q \rightarrow p \\
\hline V_{1} & 1 & 1 & &
\end{array}
$$

Tautologies

	p	q	$q \rightarrow p$	$p \rightarrow q \rightarrow p$
V_{1}	1	1	1	

Tautologies

	p	q	$q \rightarrow p$	$p \rightarrow q \rightarrow p$
V_{1}	1	1	1	1
V_{2}	1	0	1	1
V_{3}	0	1	0	1
V_{4}	0	0	1	1

Contradictions

Definition 5 (Contradiction) A formula φ is a contradiction of statement logic if and only if it holds for all valuation functions V :

$$
V(\varphi)=0
$$

- Contradictions are called logically false.
- Examples for contradictions:

$$
p \wedge \neg p, \neg(p \vee \neg p),(p \rightarrow \neg p) \wedge p, p \leftrightarrow \neg p, \ldots
$$

- Whether or not a formula is logically false can also be determined by using truth tables. Logically false formulas are false under each valuation function, i.e. in each row.

Contradictions

$$
\begin{array}{l|l||l|l|l}
& p & \neg p & p \rightarrow \neg p \mid(p \rightarrow \neg p) \wedge p \\
\hline V_{1} & 1 & &
\end{array}
$$

Contradictions

$$
\begin{array}{c|c||c|c|c}
& p & \neg p & p \rightarrow \neg p & (p \rightarrow \neg p) \wedge p \\
\hline V_{1} & 1 & 0 &
\end{array}
$$

Contradictions

	p	$\neg p$	$p \rightarrow \neg p$	$(p \rightarrow \neg p) \wedge p$
V_{1}	1	0	0	

Contradictions

	p	$\neg p$	$p \rightarrow \neg p$	$(p \rightarrow \neg p) \wedge p$
V_{1}	1	0	0	0
V_{2}	0	1	1	0

Tautologies and contradictions

Theorem 3 If φ is a tautology, then $\neg \varphi$ is a contradiction. Proof: Suppose the premise is correct and φ is a tautology. Let V be an arbitrary valuation function. By assumption, it holds that

$$
V(\varphi)=1
$$

From this it follows that

$$
V(\neg \varphi)=0
$$

due to the semantics of negation. Since we did not make any specific assumption about V, it holds for any V that $V(\neg \varphi)=0$. Hence, by definition, $\neg \varphi$ is a contradiction.

Tautologies and contradictions

Theorem 5 If φ is a contradiciton, then $\neg \varphi$ is a tautology. Proof: Suppose the premise is correct and φ is a contradiction. Let V be an arbitrary valuation function. By assumption, it holds that

$$
V(\varphi)=0
$$

From this it follows that

$$
V(\neg \varphi)=1
$$

due to the semantics of negation. Since we did not make any specific assumption about V, it holds for any V that $V(\neg \varphi)=0$. Hence, by definition, $\neg \varphi$ is a tautology.

Logical equivalence

Definition 7 (Logical equivalence) Two formulas φ and ψ are logically equivalent, formally written as

$$
\varphi \Leftrightarrow \psi
$$

if and only if for all valuation functions V it holds that:

$$
V(\varphi)=V(\psi)
$$

- Note: "Logical equivalence" is a meta-linguistic notion, while "equivalence" in the sense of \leftrightarrow is an operator of the object language.
- Logical equivalence can be decided with the help of truth tables as well.

Logical equivalence

\[

\]

Logical equivalence

$$
\begin{array}{c|c|c|c||c|c|c|c}
& p & q & r & p \wedge q & q \wedge r & p \wedge(q \wedge r) & (p \wedge q) \wedge r \\
\hline V_{1} & 1 & 1 & 1 & 1 & &
\end{array}
$$

Logical equivalence

	p	q	r	$p \wedge q$	$q \wedge r$	$p \wedge(q \wedge r)$	$(p \wedge q) \wedge r$
V_{1}	1	1	1	1	1		

Logical equivalence

	p	q	r	$p \wedge q$	$q \wedge r$	$p \wedge(q \wedge r)$	$(p \wedge q) \wedge r$
V_{1}	1	1	1	1	1	1	

Logical equivalence

	p	q	r	$p \wedge q$	$q \wedge r$	$p \wedge(q \wedge r)$	$(p \wedge q) \wedge r$
V_{1}	1	1	1	1	1	1	1
V_{2}	1	1	0	1	0	0	0
V_{3}	1	0	1	0	0	0	0
V_{4}	1	0	0	0	0	0	0
V_{5}	0	1	1	0	1	0	0
V_{6}	0	1	0	0	0	0	0
V_{7}	0	0	1	0	0	0	0
V_{8}	0	0	0	0	0	0	0

Hence:

$$
(p \wedge q) \wedge r \Leftrightarrow p \wedge(q \wedge r)
$$

Logical equivalence

Theorem 7φ and ψ are logically equivalent if and only if $\varphi \leftrightarrow \psi$ is a tautology.
Proof:

- Forward direction: Suppose $\varphi \Leftrightarrow \psi$. Let V be an arbitrary valuation function. By assumption, it holds that $V(\varphi)=V(\psi)$. Hence either $V(\varphi)=V(\psi)=0$ or $V(\varphi)=V(\psi)=1$. In either case, it follows from the semantics of the equivalence that $V(\varphi \leftrightarrow \psi)=1$.

Logical equivalence

- Backward direction: Suppose $\varphi \leftrightarrow \psi$ is a tautology. Let V be an arbitrary valuation function. We have to distinguish two cases:
- $V(\varphi)=1$. It follows from the semantics of equivalence that $V(\psi)=1$.
- $V(\varphi)=0$. It follows from the semantics of equivalence that $V(\psi)=0$.
In both cases it holds that $V(\varphi)=V(\psi)$. Hence φ and ψ are logically equivalent.

