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Quantifiers

so far no significant extension of statement logic

especially the theory of logical inference is identical to
statement logic

real quantum leap from statement logic to predicate
logic is the introduction of quantifiers
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Quantifiers

PL (predicate logic) subsumes classical syllogistics

(1) a. All humans are mortal.
b. No Greek is a philosopher.
c. Some philosophers are musicians.
d. Not all Greeks are musicians.

Expressions like all, no, some, every, ...

are called quantifiers .

Mathematics for linguists – p. 3



Quantoren

PL extends syllogistics in two ways:
several quantifiers can occur within one simple
statement

(2) Every Greek knows some musician.

bound pronouns/variables

(3) For every Greek it holds that: if he knows some
musician, then he knows some instrument.
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The universal quantifier

new symbol: ∀

pronounced as: “for all” or “for every”

direct counterpart of English for every object, it holds
that:

Engl.: every object is referred to via pronoun it

PL:
pronouns are translated as variables
for clarity’s sake, it is indicated at the quantifier which
variable it binds
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The universal quantifier

For every object it holds: if it is a triangle, it is a polygon.
 

∀x(Triangle(x) → Polygon(x))

For each object it holds: it is a Greek, or it is not a Greek.
 

∀y(Greek(y) ∨ ¬Greek(y))
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The universal quantifier

By means of appropriate paraphrases, expressions like all
and every can be translated using the universal quantifier.
For instance:

original sentence

All humans are mortal.

paraphrase:

For each object it holds: if it is human, it is mortal.

translation:

∀x(Human(x) → Mortal(x))
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The existential quantifier

new symbol: ∃

pronounced as: “there is a” or “there exists a”

PL-counterpart to English There is an object such that

as with the universal quantifier, it is indicated explicitly
which variable is bound
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The existential quantifier

There is an object such that it is a rectangel and a rhombus.
 

∃x(Rectangle(x) ∧ Rhombux(x))

There is an object such that it is a Greek but not a
philosopher. 

∃z(Greek(z) ∧ ¬Philosopher(z))
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The existential quantifier

By means of appropriate paraphrases, expressions like
some and a can be translated using the existential
quantifier. For instance:

original sentence:

Some Greeks are philosophers.

paraphrase:

There is an object such that it is a Greek and a
philosopher.

translation:

∃y(Greek(y) ∧ Philosopher(y))
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Restricted quantification

Quantification in natural language is usually restricted

All Humans are mortal.
Some Greeks are philosophers.

quantification in logic is in principle unrestricted

for every object, there is an object

Restriction of the universal quantifier is translated using
the implication

∀x(Human(x)→Mortal(x)

Restriction of the existential quantifier is translated
using conjunction

∃x(Greek(x)∧Philosopher(x))
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Multiple quantification

One sentence may contain more than one quantifying
expression

(4) a. Every man loves every dish.
b. All children read all books.
c. Some children gave a guest a candy.

Accordingly, translation contains several quantifiers.

(5) a. ∀x(Man(x) → ∀y(Dish(y) → Love(x, y)))
b. ∀x(Child(x) → ∀y(Book(y) → Read(x, y)))
c. ∃x(Child(x) ∧ ∃y(Guest(y) ∧ ∃z(Candy(z) ∧

Give(x, y, z))))
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Rules of thumb for translation

given: English sentence S that needs a quantifier to be
translated

paraphrase S in such a way that it starts with for all P it
holds that ... or there is a P such that ... (where “P” is a
noun)

translate as
∀x(P (x) → ...)

or
∃x(P (x) ∧ ...)

(“P ” is the translation of the noun in question

translate the rest of the sentence
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Example

(1) a. Dogs are intelligent.
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Example

(1) a. Dogs are intelligent.
b. For every dog it holds that it is intelligent.
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Example

(1) a. Dogs are intelligent.
b. For every dog it holds that it is intelligent.
c. ∀x(Dog(x) → Intelligent(x))

(2) a. Every man cheats himself.
b. For every man it holds that he cheats himself.
c. ∀x(Man(x) → Cheat(x, x)x)

(3) a. Lions have a mane.
b. For every lion it holds that there is a mane such that

it has it.
c. ∀y(Lion(y) → ∃w(Mane(w) ∧ Has(y, w)))
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Scope ambiguity

Sentences with more than one quantifier can be
ambiguous

Expressions of predicate logic are never ambiguous

ambiguous sentences thus have more than one
translation

Every man loves a woman.

∀x(Man(x) → ∃y(Woman(y) ∧ Loves(x, y))) ∃y(Woman(y) ∧ ∀x(Man(y) → Loves(x, y)))
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Syntax of predicate logic

Definition 2 (Syntax of predicate logic, final version)

1. There are infinitely many individual constants.

2. There are infinitely many individual variables.

3. Every individual constant and every individual variable is
a term.

4. For every natural number n there are infinitely many n-
place predicates.

5. If P is an n-place predicate and t1, . . . , tn are terms, then
P (t1, . . . , tn) is an atomic formula.

6. If t1 and t2 are terms, t1 = t2 is an atomic formula.

7. Every atomic formula is a formula.

8. If ϕ and ψ are formulas, then ¬ϕ, ϕ∧ψ, ϕ∨ψ, ϕ→ ψ and
ϕ↔ ψ are also formulas.

9. If v is a variable and ϕ a formula, then ∀v(ϕ) and ∃v(ϕ)
are also formulas.
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Syntax of PL: conventions

The bracketing conventions of statement logic hold.

Furthermore, it holds that ∀v and ∃v associate stronger
than all other operators.

∀xPx ∧Qx

abbreviates
∀x(P (x)) ∧Q(x),

not
∀x(P (x) ∧Q(x))!
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Free and bound variables

we distinguish free and bound occurrences of variables
in a formula

bound occurrences of a variable in a formula are always
bound by a particular quantifier
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Free and bound variables

Definition 4 (Free and bound variable occurrences)

All variable occurrence in an atomic formula ϕ are free
in ϕ.

Every free occurrence of a variable in v in ϕ is also
freee in ¬ϕ.

Every free occurrence of a variable v in ϕ and ψ is also
free in in ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ and ϕ↔ ψ.

Every free occurrence of a variable v in ϕ is also free in
∀w(ϕ) and ∃w(ϕ), if v 6= w.

Every free occurrence of a variable v in ϕ is
bound in ∀v(ϕ) by ∀v, and
bound in ∃v(ϕ) by ∃v.

If a variable occurrence v is bound in ϕ, it is also bound
in every formula that contains ϕ as a sub-formula.
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Bound variables and scope

The formula within the bracket pair after a quantifier is
called the scope of the quantifier

Example (quantifier in green, scope in red)

∀x(P (x) → Q(x))

∀x(P (x) → Q(x)) ∧Q(x)

∃x(R(x)) ∧ ∀x(P (x) → Q(x))

∃x(R(x) ∧ ∀x(P (x) → Q(x)))

A quantifier Q binds a variable occurrence v iff
v occurs in the scope of Q, and
between Q and v there is no intervening co-indexed
quantifier Q′ such that v is in the scope of Q′ (and
that would therefore bind v)
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Predicate logic: another example

M = 〈E,F 〉

E = {DOG, CAT, MAN1, MAN2, WOMAN1,

WOMAN2, CAKE, MOUSE}

F (jo) = MAN1

F (bertie) = MAN2

F (ethel) = WOMAN1

F (fiona) = WOMAN2

F (chester) = DOG

F (prudence) = CAT

Mathematics for linguists – p. 21



Predicate logic: another example

F (Animal) = {DOG, CAT, MOUSE}

F (Run) = {DOG, CAT}

F (Laugh) = {MAN1, WOMAN1}

F (Howl) = {DOG}

F (Sing) = {WOMAN2}

F (Scream) = ∅

F (Squeak) = {MOUSE}

F (Crazy) = ∅

F (Poison) = {〈CAKE, DOG〉}

F (Eat) = {〈DOG, CAKE〉}
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Universal quantifier: interpretation

notational convention:

[t/v]ϕ

is the formula that is exactly like ϕ except that all free
occurrences of the variable v are replaced by t
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Universal quantifier: interpretation

Intuition:
∀vϕ

is true if and only if [c/v]ϕ is true for all individual
constants c

But: in our model

Animal(c) → Run(c)

holds for all individual constants c; still

∀x(Animal(x) → Run(x))

is false!

Reason: the mouse “has no name”
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Universal quantifier: interpretation

second attempt: to make

∀x(Animal(x) → Run(x))

true,
Animal(x) → Run(x)

must be true, no matter what x refers to!

Suppose, g(x) = MOUSE

then:
[Animal(x) → Run(x)]Mg = 0
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Universal quantifier: interpretation

perhaps:
[∀v(ϕ)]M = 1

if and only if for all g g:

[∀v(ϕ)]Mg = 1

But what about formulas like

∀x¬∀yPoison(x, y)
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Universal quantifier: interpretation

two problems:
quantified formulas may contain free variables;
therefore their interpretation must depend on the
assignment function as well
not the entire assignment function is varied by a
quantifier, but only the interpretation of the bound
variable
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Universal quantifier: interpretation

Notation:
let a ∈ E be an object of the model, v a variable and
g an assignment function
g[a/v]: the assignment function that is exactly like g
except that

g[a/v](v) = a

final version: Let M = 〈E,F 〉 be a model.

[∀v(ϕ)]Mg = 1

if and only if
[ϕ]Mg[a/v] = 1

for all a ∈ E
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Existential quantifier: interpretation

Intuition:
∃v(ϕ)

is true if and only if there is some individual constant c
such that

[c/v]ϕ

is true

but:
∃x(Squeak(x))

is (intuitively) true in our model even though there is no
individual constant c in our example such that

Squeak(c)

would be true in the model.
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Existential quantifier: interpretation

problem can be avoided via varying the assignment
function as well:

[∃v(ϕ)]Mg = 1

if and only if there is an object a ∈ E such that

[ϕ]Mg[a/v] = 1

in the example we have

[Squeak(x)]Mg[MOUSE/x] = 1

and hence the quantified formula is true.
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Semantics of predicate logic

Definition 6 (Semantics of predicate logic (final version)) Let
M = 〈E,F 〉 be a model and g an assignment function for M .

1. [c]Mg = F (c), if c is an individual constant.

2. [v]Mg = g(v), if v is an individual variable.

3. [P (t1, . . . , tn)]Mg = 1 iff 〈[t1]Mg , . . . , [tn]Mg 〉 ∈ F (P )

4. [t1 = t2]
M
g iff [t1]

M
g = [t2]

M
g

5. [¬ϕ]Mg = 1 − [ϕ]Mg

6. [ϕ ∧ ψ]Mg = min([ϕ]Mg , [ψ]Mg )

7. [ϕ ∨ ψ]Mg = max([ϕ]Mg , [ψ]Mg )

8. [ϕ→ ψ]Mg = max(1 − [ϕ]Mg , [ψ]Mg )

9. [ϕ↔ ψ]Mg = 1 − ([ϕ]Mg − [ψ]Mg )2

10. [∀v(ϕ)]Mg = min({[ϕ]Mg[a/v]|a ∈ E})

11. [∃v(ϕ)]Mg = max({[ϕ]Mg[a/v]|a ∈ E})
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