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Examples

o N

Side remark: if the truth value of a formula in a model does
not depend on the assignment function, the assignment

function index can be omitted. Instead of [gp]éw we simply
write [p]M.

® [FrAnimal(z)|M
Hz(Animal(
Hz(Animal(
VY (Animal(x
(

© o o o

JrScream(z)|M
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Examples

o N

Side remark: if the truth value of a formula in a model does
not depend on the assignment function, the assignment

function index can be omitted. Instead of [gp]éw we simply
write [p]M.

® [FrAnimal(z)|M =1

® [dz(Animal(x

® [Fz(Animal(z) — Run(z))]|¥ =1
® [Vz(Animal(z) — Run(z))|™ =0
. (

dJrScream
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Undecidabllity
B -

# for finite models the truth value can always be
determined

# In infinite models, it is not always possibel to determine
the truth value of a formula

s example: prime twins
» model: system of natural numbers

s truth value of the following formula (with the intended
Interpretation of the predicates) is unknown:

Vadydz(z < y A Prime(y) A Prime(z) A Plus(y, 2, 2))

o |
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| nference

-

# central notion for logic is inference
# truth is actually an auxiliary notion
# how can inference In predicate logic be determined?

o |
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L ogical inference

o N

Definition 2 (Logical inference)  From the premises
©1, - - ., en the conclusion ¢ follows logically — formally
written as

gpl...,gpn:>¢

If and only If for all models M and all assignment functions g

it holds that: if [p;]M = 1forall 1 <i <mn,thenalso [¢]¥ =1.
g g

o |
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- N

# the definitions from statement logic for the other logical
properties and relations can directly be applied to
predicate logic as well:

o |
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Tautologies

-

Definition 4 (Tautology) A formula ¢ Is a predicate logical
tautology, formally written as

-

= ¢

If and only if for all models M and all assignment function g

It holds:

]y =1
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Contradictions

-

Definition 6 (Contradiction) A formula ¢ Is a predicate
logical Contradiction if and only if for all models M and all
assignment functions g it holds:

-

]y =0
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L ogical equivalence

-

Definition 8 (Logical equivalence)  Two formulas ¢ and
are logically equivalent — formally written as

-

p =P

If and onl if for all model M and all assignment functions g it
holds that:

el = [l
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-

the meta-logical theorems of statement logic (cf. slides
from December 15) hold for predicate logic as well

How do we show that for instance a formula is a
tautology?

Example:
2 Vao-P(z) — 3y P(y)
two semantic Methods:

o reformulate as a set-theoretical statement
s try to construct a falsifying model

|
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-

to be proven:

Reduction to set theory

o forall M and g: Vz—P(z) — —ElyP(y)]éw =1

step-wise reformulation (successive application of the
semantic definitions)

1.
2.

for all M and ¢g: max([1 — [Vx—P(x )] =3y Py )] ) =1

for all M and g¢:
max([1 — mingep([~P@)M ), 1— [FyPE)}) =1

. for all M and g:

max(|1 — mingep(1 — [P(x)] a/a;])

[maxbeE([P(y)] [b/y])) 1

. for all M and g¢: J

max([maxaeE([P(x)]%a/x]), 1 — [maXbEE([P(y)]g[b/y] A



Reduction to set theory
B -

# the last line essentially says: for a specific truth value «:
max(a, 1l —a) =1

# this is of course always true
# hence the original formula is a tautology
# method is tedious and sometimes not very illuminating

o |
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Constructing a counter model

- N

# alternative method: construct a falsifying model

# Dbasic idea: indirect proof
» suppose the formula is not a tautology

» this means that there is a model and an assignment
function that make the formula false

s We try to construct such a model (and an appropriate
assignment function)

s If this attempt fails, the formula must be a tautology

o |
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® Hence: [Vz—P(z)|M
® Hence: [Vz—P(2)];! =1 and [FyP(y)];! =1

Constructing a counter model

Suppose: there are M and g such that
Va=P(z) — =3yP(y)];" =0

|;; =1and —EIyP(y)]éW =0

# Hence: mingcg(|—P(x )]g[a/x) =1 and

maXbeE([P(y)]%j/y]) =1

Hence: min,cg(1 — [P(2)]¥ , ) =1 and

maXbeE([P(y)]%/y]) =1

Hence: maxaeE([P(x)]%a/x]) =0 and
M

maXbEE([P(y)]g[b/y]) = 1: Contradiction

Mathematics for linguists
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Constructing a counter model

- N

# Example for a non-tautology:
VedyRxy

# Assumption: there is a (counter) model M and an
assignment g such that:

. :VxHyRa:y]fy =0
s Nhence: minaeE[Elnyy]%a/x]] =0

» hence: for some a € E: [Hnyy]g[a/x]] =0

s hence: max;¢ E[ny]%a J2lby] = O
» hence: for all b € E: [Ray]Y! gla/zlibjy] = O
L s hence:forallbe F: (a,b) ¢ F(R) J
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Constructing a counter model

- N

# simplest model with these properties:
s M= (FE F)
s F={a}
s F(R)=1

® counter model method can be automatized to a certain
degree:

# truth tree method for predicate logic
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Truth tree calculusfor predicatelogic

- N

# all rules of the truth tree calculus for statement logic
remain valid

# there are four new rules, two per quantifier
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Rules

- N

# universal quantifier

(V)  Vzp
c/x]p
where ¢ Is an arbitrary constant that does occur within

the same branch. If no constant occurs in this branch so
far, ¢ can be freely chosen.

# existential quanifier
(3 Ty
c/x]p

L where c Is an arbitrary constant that does not occur J
within the same branch.
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Rules
| -

# negation + universal quantifier

(Neg+V) —Vzp
o/ x] e
where c Is an arbitrary constant that does not occur
within the same branch.
# negation + existential quantifier

(Neg +3) -3z
/x|~

where c Is an arbitrary constant that does occur within
L the same branch. If no constant occurs in this branch so
far, ¢ can be freely chosen.
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Rules

- N

# The rules (3) and (—V) may only be applied once per
formula.

# The rules (V) and (—3) can be applied with every
constant that occurs in this branch.

# Rule of thumb: if you have the choice, first apply (3) and
(=V), and apply (V) and (—3) later
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Examples

1. =(Vx—=Px — —-dzPx) (A)
2. Vr—Px (1)
3. ——dzPx (1)
4. drPx (3)
5. Pa (4)
6. —Pa (2)
7. X (5,6)

The assumption that Vz—Px — -3z Pz Is false in a model,
l.e. that the negation —(Vx—Px — —dxzPx) Is true leads to a
contradiction. Hence the original formula is a tautology.

o |
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Examples

1. =VzdyRzy (A)
2. —dyRay (1)
3. Raa (2)

The branch remains open, even though no further rules can
be applied. The formula Vz3yRxy Is thus not a tautology.

)

o |
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| nference and truth trees

- N

# logical inferences can be proved using the truth tree
calculus as well

# similary as in statement logic, for indirect proof we
assume that
» all premises are true, and
» the conclusion is false

# hence a truth tree for an inference starts with the
premises and the negation of the conclusion

o |
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Stk W=



Ve(P(x) — Q(x)) = Vo P(x) — VeQ(x)
Ve(P(z) — Q(z))  (4)
~(VeP(z) — VaQ(z)) (A)
VaeP(x) (2)
Yz Q(z) (2)
—Q(a) (4)
P(a) (3)
P(a) — Q(a) (1)
/\
—Pla) (7)) 9. Qa) (7)
X (6,8) X (5,9)
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Examples

JxP(x) & P(a)

1. JzP(x) (
2. —=P(a) (
3. P(a) (1

X (2,3)

WRONG!!
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Examples

JxP(x) & P(a)

1. dzP(z) (A)
2. —P(a) (A)
3. P (1)

CORRECT
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Examples

deVyR(x,y) = Yy3zR(x,y)

1. daVyR(z,y) (A)
2. =VydzR(z,y) (A)
3. VyR(a,y) (1)
4.  —JdzR(z,b) (2)
5 R(a,b) (3)
6 -R(a,b) (4)

X (5,6)
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Undecidabllity

-,
= daVyR(x,y)

1. —JaxVyR(x,y) (A)
2. —VyR(a,y) (1)
3. —R(a,b) (2)
4.  =VyR(b,y) (1)
5. —R(b, c) (2)
6. —VyR(c,y) (1)
7. ,d) (2)
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-

# Dbranch can be extended arbitrarily often without ever

Undecidabllity
-

encountering a contradiction

# it generally holds:

»

only logical inferences can be proved with this
method (i.e. the calculus is sound )

for each logical inference there is a proof within the
truth tree calculus (the calculus is complete )

there is no guarantee that a non-inference is
recognized as such

procedure may enter infinite loops

|
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Undecidabllity
B -

# there are no other mechanical procedures either that
always correctly distinguish inference from
non-inferences within finite time

# Iinference in predicate logic is undecidable

o |
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