Mathematics for linguists

Gerhard Jäger

gerhard.jaeger@uni-tuebingen.de

Uni Tübingen, WS 2009/2010

October 29, 2009

Ordered pairs

- sets are not ordered: $\{a, b\} = \{b, a\}$
- for many applications we need ordered structures
- most basic example: ordered pair $\langle a, b \rangle$
 - ordered:

If $a \neq b$, then $\langle a, b \rangle \neq \langle b, a \rangle$.

• extensional:

 $\langle a_1, b_1 \rangle = \langle a_2, b_2 \rangle$ if and only if $a_1 = a_2$ and $b_1 = b_2$.

Set theoretic definition

 $\langle a,b\rangle\doteq\{\{a\},\{a,b\}\}$

Ordered pairs and tuples

- set theoretic definition does what it is supposed to do, because:
 - If $a \neq b$, then $\{\{a\}, \{a, b\}\} \neq \{\{a\}, \{a, b\}\}$.
 - $\{\{a_1\}, \{a_1, b_1\}\} = \{\{a_2\}, \{a_2, b_2\}\}$ if and only if $a_1 = a_2$ and $b_1 = b_2$.
- ordered *n*-tuples can be defined recursively as ordered pairs

The Cartesian product

- Cartesian product:
 - operation between two sets
 - notation: $A \times B$
 - set of all ordered pairs, such that the first element comes from *A* and the second one from *B*:

$$A \times B = \{ \langle a, b \rangle | a \in A \text{ and } b \in B \}$$

The Cartesian product

- examples
 - Let $K = \{a, b, c\}$ and $L = \{1, 2\}$.

$$\begin{split} K \times L &= \{\langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 1 \rangle, \langle a, 2 \rangle, \langle c, 1 \rangle, \langle c, 2 \rangle \} \\ L \times K &= \{\langle 1, a \rangle, \langle 1, b \rangle, \langle 1, c \rangle, \langle 2, a \rangle, \langle 2, b \rangle, \langle 2, c \rangle \} \\ K \times K &= \{\langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, a \rangle, \langle b, b \rangle, \langle b, c \rangle, \\ &\qquad \langle c, a \rangle, \langle c, b \rangle, \langle c, c \rangle \} \\ L \times L &= \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle \} \\ K \times \emptyset &= \emptyset \\ L \times \emptyset &= \emptyset \end{split}$$

Observation: If A and B are finite, then:

$$|A \times B| = |A| \times |B|$$

The Cartesian product

- Cartesian product between more than two sets:
 - $A \times B \times C \doteq (A \times B) \times C$
 - similarly for more than three sets
 - $A \times B \times C$ is the set of all triples ("3-tuple"), such that the first component is an element of A, the second one an element of B, the the third one an element of C.
 - again, this holds analogously for more than three sets
- Notations:
 - $\Pi_{1 \leq i \leq n} A_i \doteq A_1 \times A_2 \times \cdots \times A_n$ (Do not confuse with projection operations!)

•
$$A^n \doteq \underbrace{A \times \cdots \times A}_{n \text{ times}}$$

Projections

• projection operations map an ordered pair to on of its components:

$$\begin{aligned} \pi_0(\langle a,b\rangle) &\doteq a \\ \pi_1(\langle a,b\rangle) &\doteq b \end{aligned}$$

• Besides, there are projection operations from sets of ordered pairs to the set of the first (second) elements:

$$\Pi_0(R) \doteq \{x | \text{There is an } a \in R \text{ such that } \pi_0(a) = x \}$$

$$\Pi_1(R) \doteq \{x | \text{There is an } a \in R \text{ such that } \pi_1(a) = x \}$$

- Intuitive basis:
 - A (binary) relation is a relation between two objects.
 - Can be expressed by a transitive verb or a construction like [noun] of/[adjective in comparative form] than
 - examples:
 - mother of
 - taller than
 - predecessor of
 - loves
 - is interested in
 - ...

- mathematical modeling: extensional
- It is only important between **which objects** a relation holds; it is not important **how** the relation is characterized
- for instance: If every person (within the universe of discourse) loves their spouse and nobody loves anybody else than their spouse, then the relations of "loving" and of "is spouse of" are identical.

- notation:
 - relations are frequently written as R, S, T, \ldots
 - "a stands in relation R to b " is written as R(a,b) or Rab or aRb
- A relation is a set of ordered pairs.

Definition

R is a relation iff there are sets A and B such that $R \subseteq A \times B$.

The notation Rab (R(a, b), aRb) is thus a shorthand for $\langle a, b \rangle \in R$.

Let $R \subseteq A \times B$.

- R is a relation between A and B or from A to B.
- $\pi_0[R] := \{a \in A | a = \pi_0(\langle a, b \rangle) \text{ for some } \langle a, b \rangle \in R\} \subseteq A$
- $\pi_1[R] := \{ b \in B | b = \pi_1(\langle a, b \rangle) \text{ for some } \langle a, b \rangle \in R \} \subseteq B$
- $\pi_0[R]$ is the domain of R (German: Definitionsbereich)
- $\pi_1[R]$ is the Range of R (German: Wertebereich)

Relations are sets, hence set theoretic operations are defined for them. For instance:

$$\overline{R} = (A \times B) - R$$

Inverse relation

Let $R \subseteq A \times B$.

- R^{-1} is the inverse Relation to R.
- Rab iff $R^{-1}ba$
- $R^{-1} := \{ \langle a, b \rangle \in B \times A | \langle b, a \rangle \in R \}$
- $\pi_0[R] = \pi_1[R^{-1}]$
- $\pi_1[R] = \pi_0[R^{-1}]$

Examples:

- $A = \{1, 2, 3\}$
- $B = \{a, b, c\}$
- $R = \{ \langle 1, a \rangle, \langle 1, c \rangle, \langle 2, a \rangle \}$
- $\pi_0[R] = \{1,2\} \subseteq A$
- $\pi_1[R] = \{a, c\} \subseteq B$
- $\overline{R} = \{ \langle 1, b \rangle, \langle 2, b \rangle, \langle 2, c \rangle, \langle 3, a \rangle, \langle 3, b \rangle, \langle 3, c \rangle \}$
- $R^{-1} = \{ \langle a, 1 \rangle, \langle c, 1 \rangle, \langle a, 2 \rangle \}$

- notion of a relation can be generalized to dependencies of higher arity
- examples for ternary relations: "between", "are parents of", ...
- formally: an *n*-ary relation is a set of *n*-tuples
- $R \subseteq A_1 \times \cdots \times A_n$

Functions

- functions: special kind of relations
- $f \subseteq A \times B$ is a function iff every element of A is paired with exactly one element of B.

examples:

- $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4\}$
- functions:

$$P = \{ \langle a, 1 \rangle, \langle b, 2 \rangle, \langle c, 3 \rangle \}$$
$$Q = \{ \langle a, 3 \rangle, \langle b, 4 \rangle, \langle c, 1 \rangle \}$$
$$R = \{ \langle a, 3 \rangle, \langle b, 2 \rangle, \langle c, 2 \rangle \}$$

• no functions:

$$\begin{array}{lll} S &=& \{\langle a,1\rangle,\langle b,2\rangle\}\\ T &=& \{\langle a,2\rangle,\langle b,3\rangle,\langle a,3\rangle,\langle c,1\rangle\}\\ V &=& \{\langle a,2\rangle,\langle a,3\rangle,\langle b,4\rangle\} \end{array}$$

Functions

- notations and writing conventions:
 - we frequently used the letters f,g,F,G,H etc. for functions
 - $f: A \to B$ means "f is a function and $f \subseteq A \times B$ "
 - f(a) = b (or also: $f : a \mapsto b$) is shorthand for " $\langle a, b \rangle \in f$ "
 - elements of the domain are called arguments of the function
 - elements of the range are called values of the function
 - f is called surjective (or "onto") iff every element of B is paired with at least one argument, i.e. $\pi_1[f] = B$.
 - *f* is called injective (or "1-1") if every element of *B* is paired with at most one argument.
 - *f* is called bijective (oder "1-1 onto"), if it is injective and surjective.

The function f is bijective iff f^{-1} is also a function. In this case, f^{-1} is called the inverse function of f.

Functions

- Functions are frequently defined via some rule that enables us to find the value for each argument.
- examples:
 - f(x) = x + 2
 - $g(x) = x^2$
 - $h(x) = 3x^2 + 2x + 1$
- To decide which functions are defined here, we need to know the domain and the range.
- Question: Under what conditions do these rules define injective, surjective and/or bijective functions?

Functions of higher arity

- Domain of a function may be a relation
- examples:
 - $A = \{1, 2\}, B = \{a, b\}, C = \{\alpha, \beta\}$
 - $F: A \times B \to C$
 - $F = \{ \langle 1, a, \alpha \rangle, \langle 1, b, \alpha \rangle, \langle 2, a, \beta \rangle, \langle 2, b, \alpha \rangle \}$
- Instead of $F(\langle 1,a\rangle)$ etc. we usually write F(1,a) etc.
- If the domain of a function is an *n*-ary relation, we speak of an *n*-ary function.
- Note: n-ary functions are n + 1-ary relations!