Mathematics for linguists

WS 2009/2010 University of Tübingen

February 4, 2010

Gerhard Jäger

Mathematics for linguists - p. 1

Natural deduction for predicate logic

- direct extension of natural deduction for statement logic
- four new rules: one introduction rule and one elimination rule for each quantifier
- there are side conditions that need to be taken into account

Natural deduction: rules

Universal quantifier

$$\frac{\varphi}{\forall v\varphi} \, \forall E$$

- \bullet v is an arbitrary variable
- Constraint: v does not occur free in any accessible assumption!

$$\frac{\forall v\varphi}{[t/v]\varphi} \,\forall B$$

- v is an arbitrary variable and t an arbitrary constant or variable
- **Constraint:** if t is a variable, it must not occur bound in $[t/v]\varphi$

Natural deduction: rules

Existential quantifier

- v is an arbitrary variable and t an arbitrary constant or variable
- Constraint: if t is a variable, it must not occur bound in $[t/v]\varphi$

Natural deduction: rules

Existential quantifier

- \bullet v is an arbitrary variable
- Constraints
 - c is a new constant that does not occur so far in the proof
 - $\checkmark c$ does not occur in ψ

Examples

$$\neg \exists x P x \vdash \forall x \neg P x$$

 $\forall x \neg Px \vdash \neg \exists x Px$

$$1.\neg \exists x P(x) \qquad (A)$$

$$2.Px \qquad (A)$$

$$3.\exists x Px \qquad 2; \exists I$$

$$4.\neg Px \qquad 2, 3, 1, 3; \neg I$$

$$5.\forall x \neg Px \qquad 4; \forall I$$

Examples

$$\neg \forall x P x \vdash \exists x \neg P x \qquad \exists x \neg P x \vdash \neg \forall x P x$$

$$1. \neg \forall x P x \quad (A)$$

$$2. \neg \exists x \neg P x \quad (A)$$

$$3. \neg P x \quad (A)$$

$$4. \exists x \neg P x \quad 3; \exists I$$

$$5. \neg \neg P x \quad 3, 4, 2; \neg I$$

$$6. P x \quad \neg E$$

$$7. \forall x P x \quad 6; \forall I$$

$$8. \neg \neg \exists x \neg P x \quad 2, 7, 1; \neg I$$

$$9. \exists x \neg P x \quad \neg E$$

$$3. \neg \forall x P x \quad 2, 3, 1; \neg I$$

$$3. \neg P x \quad A, 3, 5; \neg I$$

$$7. \neg \exists x \neg P x \quad 1, 2, 3; \exists E$$

$$8. \neg \forall x P x \quad 2, 3, 1; \neg I$$

Examples

 $\forall x(Px \land Qx) \vdash \forall xPx \land \forall xQx \quad \exists xPx \to Qa \vdash \forall x(Px \to Qa)$

$1.\forall x(Px)$	$\wedge Qx)$	(A)
$2.Px \land Qx$ $1; \forall E$		
3.Px	$2; \wedge E1;$	
4.Qx	$2; \wedge E2;$	
$5. \forall x P x$	$3; \forall I$	
$6. \forall xQx$	$4; \forall I$	
$7. \forall x Px \land$	$\forall xQx$	$5, 4, \wedge I$

$$1.\exists x P x \to Q a \qquad (A)$$

$$2.Px \qquad (A)$$

$$3.\exists x P x \qquad 2; \exists I$$

$$4.Qa \qquad 1, 2; \to E$$

$$5.Px \to Qa \qquad 2, 3; \to I$$

$$6.\forall x (Px \to Qa) \qquad 5; \forall I$$

Final remarks

- calculus of natural deduction is sound and complete
- this means that all and only the logically valid inferences can be proved
- the constraints are necessary; otherwise it would be possible to derive invalid inferences, for instance

• $\exists x P x \vdash \forall x P x$

Final remarks

- As for the truth tree method, there is no fool-proof solution strategy for natural deduction; and for the same reason
- with the elimination rule for the existential quantifier, arbitrarily many constants can be introduced into a proof, and each constant can be used in the elimination rule for the universal quantifier