
Mathematics for linguists

Gerhard Jäger
gerhard.jaeger@uni-tuebingen.de

Uni Tübingen, WS 2009/2010

November 10, 2009

1/16



Theory of formal languages

Formal language:

• set of strings of symbols

• formal languages (for the time being) only model the form
aspect of natural languages

• basic assumption: any string of symbols either belongs or does
not belong to a given language ⇒ idealization

• all interesting formal langauges are infinite (i.e. infinte sets of
finite strings)

• formal grammar: finite description of a formal language

• (language) automata: abstract machines (computer programs)
that are able to decide wehther or not a string belongs to a
given formal language

2/16



Foundations

• Let a finite set A of symbols (called the alphabet or the
vocabulary) be given

• (symbol) string over A: finite sequence of elements of A

• example:
• A = {a, b, c} (for instance {Peter, Mary, sees})
• strings over A:

• ~x := abc (Peter Mary sees)
• ~y := acbbca (Peter sees Mary Mary sees Peter)
• ~z := bacbbca (Mary Peter sees Mary Mary sees Peter)

• length of a string: number of symbols that occur in the string
(if the same symbol occurs more than once, it is counted
more than once)

• l(~x) = 3
• l(~y) = 6
• l(~z) = 7

3/16



Foundations

• A string of length n over the vocabulary A can be modeled
set theoretically as

• a function from {0, 1, . . . , n− 1} to A

• ‘Peter sees Mary Mary sees Peter’ comes out as the
function

f : {0, 1, 2, 3, 4, 5} → {Peter, Mary, sees} with

0 7→ Peter
1 7→ sees
2 7→ Mary
3 7→ Mary
4 7→ sees
5 7→ Peter

or, equivalently f(0) = Peter
f(1) = sees
f(2) = Mary
f(3) = Mary
f(4) = sees
f(5) = Peter

4/16



Foundations

• A string of length n over the vocabulary A can be modeled
set theoretically as

• a function from {0, 1, . . . , n− 1} to A

• Important: there is a difference between an element a ∈ A
and the string a of length 1, which only consists of the symbol
a. The latter is, strictly speaking, the function f : {0} → A
with f(0) = a.

• There is exactly one string of length 0, the empty string. It is
written as ε. Technically, it is the (empty) mapping
ε : { } → A (for any arbitrary alphabet A). (sometimes
written as e or as 〈〉, since it can be considered a 0-tuple).

• The set of all finite strings over A (including the empty
string) is written as A∗.

5/16



Foundations

Concatenation

• most important operation over strings: concatenation (dt.
Verkettung), written as “·” (or “_”)

• juxtaposition of two strings:
• abc · abc = abcabc
• daaac · ε = daaac
• ε · cabbba = cabbba

• associative: for arbitrary strings ~u,~v, ~w ∈ A∗:

(~u · ~v) · ~w = ~u · (~v · ~w)

• ε is a neutral element for concatenation:

ε · ~u = ~u = ~u · ε

6/16



Foundations

Reversal of a string

• Notation: If ~u is a string, ~uR is the reversal of this string.

• for instance: (acbab)R = babca

• for the empty string, we have: εR = ε

• recursive definition:

Definition

Let A be an alphabet.

1 If ~v is a string of length 0 (i.e. ~v = ε), then ~vR = ~v.
2 If ~v is a string of length n+ 1, then it can be written as ~wa

(with ~w ∈ A∗ and a ∈ A). It holds that: (~wa)R = a~wR.

7/16



Foundations

• Connection between concatenation and reversal:

(~u · ~v)R = ~vR · ~uR

• substring: ~v is a substring of ~u ∈ A∗ iff there are ~z, ~w ∈ A∗

such that ~u = ~z · ~v · ~w.

• If ~v is a substring of ~u and l(~v) < l(~u), then ~v is a proper
substring of ~u.

• prefix: ~v is a prefix of ~u ∈ A∗ iff ther is some ~w ∈ A∗ such
that ~u = ~v · ~w.

• Suffix: ~v ist ein Suffix von ~u ∈ A∗ gdw. es ein ~w ∈ A∗ gibt so
dass ~u = ~w · ~v.

8/16



Languages

Formal languages

A (formal) Language over an alphabet A is a subset of A∗, i.e. a
set of strings over A.

• Languages can be finite or infinite.

• As linguists, we are mainly interested in infinite languages.

• Not all languages have a finite description.

• Humboldt: (Natural) languages make “infinite use of finite
means” ⇒ natural languages are infinite, but they have finite
descriptions (grammars)

9/16



Languages

Examples for formal languages

• L = {~x ∈ {a, b}∗|~x contains the same number of a and b (in
any order)}

• L1 = {~x ∈ {a, b}∗|~x = anbn, n ≥ 0 (i.e. a string of n times a,
followed by an equal number of b) }

• L2 = {~x ∈ {a, b}∗|~x contains n times b and n2 times a, for
n ∈ N}

10/16



Grammars

(Formal) Grammars are precise descriptions of formal languages. A
grammar consists of

• two alphabets, the terminal alphabet VT and the
Non-terminal alphabet VN ,

• a start symbol S, and

• a set of (replacement) rules. A replacement rule consists of
two parts, the left hand side and the right hand side.

We obtain a derivation for a grammar by starting with the string
S, and successively replacing substrings with match with the right
hand side of a rule by the left hand side of the same rule.

11/16



Grammars

Examples

VT (terminal alphabet) = {a, b}
VN (non-terminal alphabet) = {S,A,B}

S (start symbol)

R (rules) =



S → ABS
S → ε
AB → BA
BA → AB
A → a
B → b



12/16



Grammars

• Convention: terminal symbols are written as lower case letters
and non-terminal symbols as upper case letters.

• Derivation for the grammar from the previous slide:

S ⇒ ABS ⇒ ABABS ⇒ ABAB ⇒ ABBA⇒ ABbA⇒
aBbA⇒ abbA⇒ abba

• We cannot apply any replacement rules to abba anymore,
because it consists exclusively of terminal symboles. Such a
string is called terminal string.

• The language that is generated by a grammar is defined as
the set of all terminal strings that can be derived from the
start symbol via (repeated) applications of the replacement
rules.

13/16



Grammars

Definition ((Formal) Grammar)

A (formal) grammar is a 4-tuple 〈VT , VN , S,R〉, where VT and VN

are finite, mutually disjoint sets (i.e. VT ∩ VN = ∅), S ∈ VN , and
R ⊆ (VT ∪ VN )∗ × (VT ∪ VN )∗. Furthermore, the left hand side of
each rule contains at least one element of VN .

We usually write rules as α→ β rather than 〈α, β〉.

14/16



Grammars

Definition (Derivation)

Let G = 〈VT , VN , S,R〉 be a grammar. A derivation for G is a
sequence of strings ~x0, ~x1, . . . , ~xn(n ≥ 0), such that for every ~xi

with 0 ≤ i < n it holds that

• ~xi = ~u · ~v · ~w,

• there is a rule ~v → ~z ∈ R, and

• ~xi+1 = ~u · ~z · ~w.

15/16



Grammars

Definition (Generation)

A grammar G generates a string ~x ∈ V ∗
T if and only if there is a

derivation ~x0, . . . , ~xn for G such that ~x0 = S and ~xn = ~x.

Definition (Generated language)

The language that is generated by a grammar G (written as
L(G)) is the set of all strings that are generated by G.

16/16


