
Mathematics for linguists

Gerhard Jäger

gerhard.jaeger@uni-tuebingen.de

Uni Tübingen, WS 2009/2010

November 17, 2009

1/22



Trees

Tree diagrams

A tree diagram of a sentence represents three kins of information:

• the constituent structure of the sentence,

• the grammatical category of each constituent, and

• the linear order of the constituents.

2/22



Trees

Conventions

• A tree consists of nodes, which are connected by

• edges

• By convention, edges are directed downward.

• Every node has a label.

3/22



Trees

Dominance

• A node x dominates a node y if there is a connected
sequence of directed edges that start with x and end with y.

• For a given treen T ,

DT := {〈x, y〉|x dominates y in T}

is the corresponding dominance relation

• DT is a weak ordering, i.e. it is reflexive, transitive and
anti-symmetric.

4/22



Trees

Conventions

• If x is the immediagte predecessor of y in DT , then x
immediately dominates y.

• The immediate predecessor of x according to DT is called the
mother node of x.

• The immediate successors of x are called the daughter nodes

of x.

• If two nodes are not identical but have the same mother node,
then they are called sister nodes.

• Every tree has finitely many trees.

• Every tree has a least element. The least element is called
root or root nodeof the tree.

• The maximal elements of a tree are called leaves.

5/22



Trees

Precedence

• Tree diagrams contain information on the linear order of
nodes.

• Node x precedes node y iff x is to the left of y and neither of
the two nodes dominates the other one.

• For a tree T,

PT := {〈x, y〉|x precedes y}

is the corresponding precedence relation.

• PT is a strict ordering, i.e. it is irreflexive, transitive and
asymmetric.

6/22



Trees

Exclusivity

In a tree T , any two nodes x and y are related by precedence (i.e.
PT (x, y) or PT (y, x)) iff they are not related by dominance (i.e.
neither DT (x, y) nor DT (y, x)).

7/22



Trees

No crossing

If in a tree T , node x precedes node y, then every node x′ that is
dominated by x precedes every node y′ that is dominated by y.

This condition prevents that

• One node has several mother nodes, and that

• edges cross.

8/22



Trees

Labeling

For every tree T there is a labeling function LT which assigns a
label to each node.

• LT need not be injective (several nodes may have the same
label).

• In derivation trees, leaves (also called terminal nodes) are
mapped to terminal symbols, and all other nodes to
non-terminal symbols.

9/22



Trees

Using these properties of trees, we can prove theorems, i.e. facts
that hold for all trees. For instance

Theorem

If x and y are sister nodes, than either P (x, y) or P (y, x).

Theorem

The set of leaves of a tree are linearly ordered by P .

10/22



Grammars and trees

• Trees represent the relevant aspects of a derivation.

• Connection between derivaton and tree is most transparent if
all rules of the grammar have the form

A → α

(with A ∈ VN and α ∈ (VT ∪ VN )∗)

11/22



Grammars and trees

Definition

A grammar G = 〈VT , VN , S, R〉 where all rules have exactly one
non-terminal symbol as left hand side generates a tree T iff

• the root of T is labeled with S,

• the leaves are labeled either with terminal symbols or with ǫ,
and

• for each sub-tree A

α1, · · · , αn

in T , there is a rule

A → α1, · · · , αn in R.

12/22



Grammars and trees

Example grammar

G = 〈{a, b}, {S, A, B}, S, R〉

R =







S → AB B → Bb
A → aAb B → b
A → ǫ







13/22



Grammars and trees

This grammar generates for instance the following tree:

S

A B

a A b B b

ǫ b

Question: Which language is generated by this grammar?

14/22



Context-sensitive rules

Sometimes it is desirable to restrict the applicability of a certain
rule to specific contexts. For instance:

• D → des only if the following noun is masculin or neuter
singular genitive

• /d/ → [d] only if this segment is not at the end of a word

• [past, 1.pers] → −t− only if it is preceded by the stem of a
weak verb

• ...

Question: Can you think of more examples for context-sensitive
rules?

15/22



Context-sensitive rules

• usual format for context-sensitive rules:

A → γ/α β

• A: non-terminal symbol

• α, β, γ: string of terminal and non-terminal symbols

• γ 6= ǫ

• α β is the context in which the rule A → γ can be applied

• “official” notation:
αAβ → αγβ

16/22



The Chomsky hierarchy
Different restrictions for the format of rules of a grammar lead to
the following hierarchy of grammar types:

Chomsky hierarchy

Typ 0 no restrictions

Typ 1 rules of the form context-sensitive grammar

S → ǫ or αAβ → αγβ
A, S ∈ VN (S start symbol), α, β, γ ∈ (VT ∪ VN )∗, γ 6= ǫ

If S → ǫ is a rule, then S never occurs
as the right hand side of a rule.

Typ 2 Rules of the form A → γ context-free grammar

A ∈ VN , γ ∈ (VT ∪ VN )∗

Typ 3 Rules of the form A → ~xB regular grammar

or A → ~x
A, B ∈ VN , ~x ∈ V ∗

T 17/22



The Chomsky hierarchy

• no strict hierarchy, because ǫ may occur as right hand side in
context-free gramamrs, but no (in the general case) in
context-free grammars

Typ 3 ⊂ Typ 2 6⊆ Typ 1 ⊂ Typ 0

18/22



The Chomsky hierarchy

Grammar hierarchy corresponds to hierarchy of formal languages:

• Type-0 languages (“recursively enumerable languages”):
languages that are generated by type-0 grammars

• Type-1 languages (“context-sensitive languages”): languages
that are generated by type-1 grammars

• Type-2 languages (“context-free languages”): languages that
are generated by type-0 grammars

• Type-3 languages (“regular languages”): languages that are
generated by type-0 grammars

Theorem

If L is a context-free language, than it is also a context-sensitive

language.

19/22



The Chomsky hierarchy

• All context-sensitive languages are decidable — for each of
these languages, there is a computer program that can decide
in finite time whether or not a given string belongs to that
language.

• Recursively enumerable languages are not always decidable.
For instance, the set of all provable mathematical statements
is a recursively enumerable language that is not decidable.

• Context-free languages can be processed efficiently by a
computer (time complexity is maximally cubic).

• Regular languages can be processed very efficiently by a
computer (time complexity is maximally linear).

• Context-sensitive languages can not alway be processed
efficiently by a computer.

20/22



The Chomsky hierarchy

• 1957 (Chomsky): proof that English is not a regular language

• 1957 (Chomsky): conjecture that natural languages are
generally not context-free, but context-sensitivel

• 1982 (Pullum & Gazdar):
”
Natural Languages and

Context-Free Languages“ — arguments that neither English
nor any other natural language has so far clearly proven to be
not context-free.

• 1984 (Huybregts), 1985 (Shieber): proof that Swiss German is
not context-free

• Most phonological and morphological processes in natural
languages can be captured by regular grammars.

21/22



The Chomsky hierarchy

22/22


