
Mathematics for linguists

Gerhard Jäger
gerhard.jaeger@uni-tuebingen.de

Uni Tübingen, WS 2009/2010

November 19, 2009

1/23

Automata (informally)

• imaginary machine/abstract model of a machine

• behaves according to certain rules.

• behavior of the automata depends on information, that the
automate receives from the environment

• automata “make decisions”

2/23

An example

3/23

Language automata

• automaton receives input from it environment (for instance
key stroke by user)

• input can be represetned as string of symbols from an
alaphabet (in the simplest case, these are just “0” and “1”)

• automaton produces output

• can also be represented as string of symbols

4/23

The laughing automaton (according to Stefan
Müller)

5/23

Finite automata

• A finite automaton
• has finitely many states,
• receives as input strings over some alphabet Σ,
• returns as output either “yes” or “no”

• A finite automaton thus defines a formal language — the set
of inputs for which it returns the symbol “yes”

6/23

Finite automata

Definition (Deterministic finite automaton)

A deterministic finite automaton (DFA) M is a 5-tuple

M = 〈K,Σ, δ, q0, F 〉

Here K is the set of states and Σ the input alphabet, K ∩ Σ = ∅.
K and Σ are finite sets. q0 ∈ K is the initial state, F ⊆ K is the
set of final states, and δ : K × Σ→ K is the transition function.

7/23

Finite automata: example
Let M = 〈K,Σ, δ, q0, F 〉, where

K = {q0, z1, z2, z3}
Σ = {a, b}
F = {z3}

δ(q0, a) = z1

δ(q0, b) = z3

δ(z1, a) = z2

δ(z1, b) = q0

δ(z2, a) = z3

δ(z2, b) = z1

δ(z3, a) = q0

δ(z3, b) = z2

8/23

Finite automata: example

Finite automata can be represented as graphs:

• initial state is represented by an arrow

• final states are marked by double circle

• transition function is represented by labeled directed edges

9/23

Finite automata
• intuition:

• automaton starts at initial state
• input is written on some input tape (like a punchcard)
• Per temporal unit, the automaton reads a symbol α on the

input tape and moves along an arrow with the label α towards
a new state

• If the automaton is in a final state after reading the entire
input tape, the string on the input tape is accepted (output:
“yes”)

• else the string is not accepted (output: “no”)

Question: which language is accepted by the automaton from the
example?

10/23

Finite automata and formal languages

Definition

For a given DFA M = 〈K,Σ, δ, q0, F 〉 we define a function
δ̂ : K × Σ∗ → K via a recursive definition as follows:

δ̂(z, ε) = z

δ̂(z, a~x) = δ̂(δ(z, a), ~x)

Here it holds that z ∈ K,~x ∈ Σ∗ and a ∈ Σ.
The language that is accepted by M is

L(M) = {~x ∈ Σ∗|δ̂(q0, ~x) ∈ F}

11/23

Finite automata and formal languages

• definition of δ̂ extends definition of δ from single symbols to
strings of symbols

• for single symbols, it holds that: δ̂(z, a) = δ(z, a)
• it also holds that

δ̂(z, a1a2 . . . an) = δ(. . . δ(δ(z, a1), a2) . . . , an)

Theorem

Every language that is accepted by a deterministic finite
automaton is regular (Type 3 in the Chomsky hierarchy).

12/23

Idea of proof

Let
M = 〈K,Σ, δ, q0, F 〉

be a DFA. We construct a regular grammar

G = 〈VT , VN , S,R〉

as follows:

• VT = Σ
• VN = K

• S = q0

13/23

Idea of proof

• For every transition
δ(z1, a) = z2

there is a rule
z1 → az2

• If z2 ∈ F , there is the additional rule

z1 → a

• If q0 ∈ F , there is the additional rule

q0 → ε

14/23

Non-deterministic automata

• With a deterministic automaton, it is uniquely determined for
each state and each input symbol, into which state the
automaton moves

• With a non-deterministic automaton it may be due to chance
into which state the automaton moves

• In a non-deterministic automaton, δ need not be a function,
but it is a relation.

15/23

Non-deterministic automaton

Definition (Non-deterministic finite automaton1)

A non-deterministic finite automaton (NFA) M is a ein 5-tuple

M = 〈K,Σ, δ, q0, F 〉

Here

• K is a finite set, the set of states,

• Σ is a finite set, the input alphabet, with K ∩ Σ = ∅,
• δ ⊆ K × Σ×K is a relation, the transition relation,

• q0 is the initial state, and

• F ⊆ K is the set of final states.

1Differs in an inessential way from PtMW.
16/23

Non-deterministic automata

The non-deterministic transition relation can also be extended to a
relation δ̂ ⊆ K × Σ∗ ×K for strings of symbols:

δ̂(q, ε, q) for all q ∈ K
δ̂(q1, a~x, q2) iff δ(q1, a, q3), δ̂(q3, ~x, q2) for some q3 ∈ K

The language L(M) that is accepted by a NFA M is defined as

L(M) = {~x ∈ Σ∗|there is a q ∈ F such that δ̂(q0, ~x, q)}

17/23

Non-deterministic automata

• example:
• the following NFA accepts all words ~x over {0, 1} that end in 0.

0

0 0

0

1

z
0

z
1

z
2

18/23

Non-deterministic automata

Theorem

Every language that is accepted by a NFA is also accepted by some
DFA.

19/23

Idea of proof

Let
M1 = 〈K,Σ, δ, q0, F 〉

be a non-deterministic finite automaton. We construct a
corresponding finite automaton

M ′ = 〈K ′,Σ′, δ′, q′0, F ′〉

in the following way:

• K ′ = ℘(K)
• Σ′ = Σ
• δ′(q′1, a) = {q ∈ K|there is a q1 ∈ q′1 such that δ(q1, a, q)}
• q′0 = {q0}
• F ′ = {q′ ∈ ℘(K)|q′ ∩ F 6= ∅}

M ′ accepts the same language as M .

20/23

Finite automata and regular grammars

Theorem

For every regular grammar

G = 〈VT , VN , S,R〉

there is a NFA
M = 〈K,Σ, δ, q0, F 〉

with
L(G) = L(M)

21/23

Idea of proof

We assume that every rule R has the form A→ aB, A→ a or
S → ε. Every regular grammar can be transformed into this form.
We construct M as follows:

• K = VN ∪ {zω}
• Σ = VT

• δ(z1, a, z2) if z1 → az2 ∈ R
• δ(z1, a, zω) if z1 → a ∈ R
• q0 = S

• If S → ε ∈ R, F = {q0, zω}; otherwise F = {zω}
M accepts exactly the language that is generated by G.

22/23

Finite automata and regular languages

Theorem

Both deterministic and non-deterministic finite automata accept
exactly the regular languages.

23/23

