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Automata (informally)

imaginary machine/abstract model of a machine
behaves according to certain rules.

behavior of the automata depends on information, that the
automate receives from the environment

automata “make decisions”
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An example

insert card type in PIN

type in amount

amount ok PIN

not ok

ask for

wait amount

remove card
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Language automata

automaton receives input from it environment (for instance
key stroke by user)

input can be represetned as string of symbols from an
alaphabet (in the simplest case, these are just “0" and “1")

automaton produces output

can also be represented as string of symbols
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The laughing automaton (according to Stefan
Miiller)
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Finite automata

e A finite automaton

e has finitely many states,
e receives as input strings over some alphabet ¥,
e returns as output either “yes” or “no”

e A finite automaton thus defines a formal language — the set
of inputs for which it returns the symbol “yes"
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Finite automata

Definition (Deterministic finite automaton)

A deterministic finite automaton (DFA) M is a 5-tuple
M = <K72757q07F>

Here K is the set of states and X the input alphabet, K N Y = ().
K and X are finite sets. qo € K is the initial state, FF C K is the
set of final states, and § : K x ¥ — K s the transition function.
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Finite automata: example
Let M = (K, 3,0, qo, F'), where

K = {q,2,2, 23}

Y = {a,b}

F = {z}
6(g0,a) = =
6(q0,0) = =23
d(z1,a) = =29
6(21,0) = qo
0(z9,a) = z3
§(z2,b) = =z
6(23,a) = qo
d(z3,b) = 2o
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Finite automata: example

Finite automata can be represented as graphs:

e initial state is represented by an arrow
e final states are marked by double circle

e transition function is represented by labeled directed edges
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Finite automata
e intuition:

e automaton starts at initial state

e input is written on some input tape (like a punchcard)

e Per temporal unit, the automaton reads a symbol o on the
input tape and moves along an arrow with the label o towards
a new state

o If the automaton is in a final state after reading the entire
input tape, the string on the input tape is accepted (output:
“Yes')

e else the string is not accepted (output: “no”)

input tape

[i[n[pfuTe]

Tread head

® output signal

Question: which language is accepted by the automaton from the
example?

finite state
automaton
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Finite automata and formal languages

Definition
For a given DFA M = (K, %, 0,qo, F) we define a function
0 : K x YX* — K via a recursive definition as follows:
d(z,e) = =z
6(z,a%) = 6(8(z,a),%)

Here it holds that z € K, Z € ¥* and a € X..
The language that is accepted by M is

L(M) = {Z € £*|6(q0, %) € F}
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Finite automata and formal languages

e definition of § extends definition of & from single symbols to
strings of symbols

e for single symbols, it holds that: §(z,a) = §(z, a)
e it also holds that

A

0(z,a1ag...a,) =0(...0(0(2z,a1),a2)...,a,)

Theorem

Every language that is accepted by a deterministic finite
automaton is regular (Type 3 in the Chomsky hierarchy).
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Idea of proof

Let

M:<Ka2757q07F>

be a DFA. We construct a regular grammar

G=(Vr,Vn,S,R)

as follows:
° VT = E
° VN = K

e S=qo
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Idea of proof

e For every transition
0(z1,a) = 29

there is a rule
21 — GZ9

e If zo € F, there is the additional rule
Z1 — a
o If o € F, there is the additional rule

qo — €
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Non-deterministic automata

o With a deterministic automaton, it is uniquely determined for
each state and each input symbol, into which state the
automaton moves

o With a non-deterministic automaton it may be due to chance
into which state the automaton moves

e |n a non-deterministic automaton, § need not be a function,
but it is a relation.
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Non-deterministic automaton

Definition (Non-deterministic finite automaton?)

A non-deterministic finite automaton (NFA) M is a ein 5-tuple
M = (K,%,6,qo, F)

Here

K is a finite set, the set of states,
Y is a finite set, the input alphabet, with K N = 0,

e 0 C K x X x K is a relation, the transition relation,

qo is the initial state, and
e ' C K is the set of final states.

!Differs in an inessential way from PtMW.
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Non-deterministic automata

The non-deterministic transition relation can also be extended to a
relation § C K x X* x K for strings of symbols:

~

d(q,€,q) forall g e K

N A~

6(q17 af? QQ) |ﬂ: 6((]17 a, q3)7 5(q37 f? QQ) for some g3 S K
The language L(M) that is accepted by a NFA M is defined as

L(M) = {Z € ©*|there is a ¢ € F such that §(qo, %, q)}
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Non-deterministic automata

e example:
o the following NFA accepts all words & over {0, 1} that end in 0.

18/23



Non-deterministic automata

Theorem

Every language that is accepted by a NFA is also accepted by some
DFA.
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Idea of proof

Let
Ml = <K7E>5aQO7F>

be a non-deterministic finite automaton. We construct a
corresponding finite automaton

M/ — <K,, E/,6/7q6,F,>

in the following way:

. K' = p(K)

e Y =3

e 0'(¢},a) = {q € K]|there is a ¢ € ¢} such that §(q1,a,q)}
* qo = {a0}

e« F'={d € p(K)l¢ N F # 0}

M’ accepts the same language as M.
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Finite automata and regular grammars

Theorem

For every regular grammar
G = (Vp,Vn,S,R)

there is a NFA
M: <K72757q07F>

with
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Idea of proof

We assume that every rule R has the form A — aB, A — a or
S — €. Every regular grammar can be transformed into this form.
We construct M as follows:

o K =VyU{2,}

e X =Vp

e §(z1,a,2) if 21 — aze € R

o 0(z1,a,2,) if 21 —a€R

° q==5

If S—e€ R, F=1{q,zs,}; otherwise F = {z,}
M accepts exactly the language that is generated by G.
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Finite automata and regular languages

Theorem

Both deterministic and non-deterministic finite automata accept
exactly the regular languages.

_v regular grammars

e

DFA NFA

23/23



