Morphological language classification

Languages of the world

Gerhard Jäger

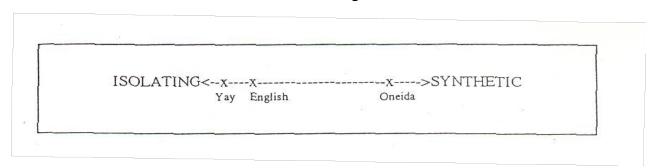
- Different degrees of morphological complexity
- exs.: Yay (Southern China; (a)) vs. Oneida (North America; (b))

```
(1) a. mi<sup>4</sup> ran<sup>1</sup> tua<sup>4</sup> ŋwa<sup>1</sup> lew<sup>6</sup>
not see CLASS snake CMPLT
He did not see the snake. (Example from Gedney 1991, xxx)
b. yo-nuhs-a-tho:lé:
3NEUT.PAT-room-epenthetic-be.cold.STAT
The room is cold. (Example from Michelson 1991, 133)
```

Morphological typology of the 19th century

- The implicit premise of the first language typology is that morphology, especially inflection, forms the core of the language system.
- Two parameters are in the center of interest:
 - 1) Expression of grammatical meaning, i.e. the degree of their grammaticalization:
 - concrete vs. abstract
 - degree of binding and fusion of grammatical forms
 - 2) Degree of complexity of the word vs. complexity of the sentence (degree of synthesis)

Edward Sapir's morphological Typology


Sapir (1921, esp. Kap. V) reduces morphological typology to two parameters:

- 1. Degree of fusion of the affixes with each other and with the root: (isolating -) agglutinative – fusional.
- 2. Degree of **synthesis** of the components of the sentence into more or less complex words: analytic synthetic polysynthetic

Index of synthesis

- One extreme: no morphological synthesis
 - Completeley isolating language
 - All morphemes are free morphemes
- Other extreme: all grammatical relations between morphemes are morphologically realized
 - Extreme polysynthesis; every sentences consists of a single (complex) word

Index of synthesis

- No language is entirely isolating
- Chinese comes close
- However, even Chinese has some inflection and derivation affixes
- Also, Chinese has composition

- (2) a. tā zài túshūguǎn kàn bào he at library read newspaper He's at the library reading a newspaper.
 - b. Xião Huáng kuài yào lái le Little Huang fast will come ASP Little Huang is coming!
 - c. tā chi le yi ge yóutiáo

 he ate PFV one CLASS fritter

 He ate one fritter. (Data adapted from Li and Ti

Properties of isolating languages

- Isolating languages frequently have a complex tonal system
- For instance Yai (cf. ex (3))
- No obvious functional explanation
- Possibly just an accidental areal phenomenon
- (3) yī (high tone) "clothes"
 yí (rising tone) "to suspect"
 yǐ (falling then rising tone) "chair"
 yì (falling tone) "meaning"
- Isolating languages frequently use serial verbs
- cf. ex (4) (also Yai)

(4) may⁶faay⁴ koŋ² ma¹ rop¹ caw³ hatq³ ku¹ bamboo bend come stroke head give I

The bamboo bends down to stroke my head for me.

Properties of isolating languages

- Isolating languages usually have fixed word order
- Not surprising from a functional perspective, because in the absence of morphological marking, grammatical distinctions can only be expressed by word order

Examples for isolating languages

- Chinese
- English
- Thai
- Vietnamese
- Bulgarian

Properties of synthetic languages

- Robust usage of morphology; i.e. Complex words
- Example: Bare (Arawakan, Venezuela), cf. (5)
 - (5) nu-khniñani hme-muduka-na-ka bì babuka Varela abi

 1P-people 3P-kill-PFV-SEQ you around Varela with

 My people shot at you because of Varela (Data from Aikhenwald 1995)

- Extremely synthetic: polysynthetic
- For instance Tiwa (NA), cf. (6)

(6) a. Ti-khwian-mu-ban
1S-dog-see-PST
I saw the dog.
b. Men-mukhin-tuwi-ban
2D-hat-buy-PST
You two bought a hat.
c. In-khwian-wia-che-ban seuanide-ba
AGR-dog-give-PASS-PST man-INST
The man gave me the dog.

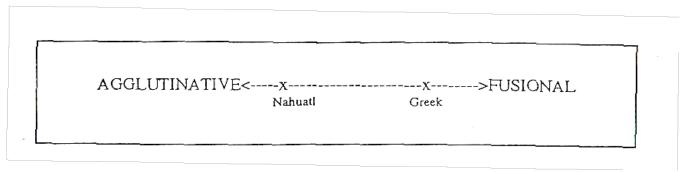
Properties of synthetic languages

- In polysynthetic languages, a single word may contain more than one lexical root
- Process is called incorporation
- Despite superficial similarity there are crucial differences to word formation via composition
 - Most frequent case: incorporation of noun by verb
 - Results in complex verb
 - Incorporated noun remains referentially autonomous
 - Incorporated noun saturates argument position of the verb

Properties of synthetic languages

- complex agreement system
- e.g. Tiwa (NA, cf. (7), (8)):
 - Verb agrees with subject, direct object and indirect object

(7) 'U-ide tow-keuap-wia-ban child-A 1S:C:A-shoe-give-PST I gave the shoes to the child.


- No language is entirely synthetic; even polysynthetic languages have syntactically complex sentences
- (8) 'U-ide tam-musa-wia-ban child-A 1S:B:A-cat-give-PST I gave the cats to the child.

Examples for strongly synthetic languages

- Inuktitut
- Chukchi
- Ainu (Japan)
- Circassian (Northern Caucasus)
- Basque
- Maya
- Lakota
- Mohawk

Fusion index

- One extreme: agglutinatinative languages
 - Morpheme boundaries are easy to identify
 - Every morpheme has a unique, clearly identifiable function
- Other extreme: fusional languages
 - No clear morpheme boundaries
 - Single grammatical morpheme frequently expresses different grammatical functions

Properties of agglutinative languages

- Clearly identifiable morphemes
- E.g. Nahautl (Uto-Aztecan)

(9)	no-kali	my house	no-pelo	my dog
	no-kali-mes	my houses	mo-pelo	your dog
	mo-kali	your house	mo-pelo-mes	your dogs
	i-kali	his house	i-pelo	his dog

- No irregular allomorphy
- Morphemes are invariant between different contexts

Examples for agglutinative languages

- Turkish
- Basque
- Chechen
- Finnish
- Hungarian
- Inuktitut
- Swahili

Properties of fusional languages

- Morpheme boundaries are difficult to identify
- e.g. Ancient Greek

- Every suffix has several grammatical functions
- Certain regularities suggest a particular segmentation
- Not possible to define this generally

(10)	lu-ō	1S:PRES:ACT:IND (I am releasing)
	lu-ōmai	1S:PRES:ACT:SBJV (I should release)
	lu-omai	1S:PRES:PASS:IND (I am being released)
	lu-oimi	1S:PRES:ACT:OPT (I might release)
	lu-etai	3S:PRES:PASS:IND (He is being released)

- There can't be purely fusional languages.
- Such a hypothetical language would be unlearnable because the number of morphemes would be huge and there would not be any systematicity within paradigms.

Examples for fusional languages

- Ancient Greek
- Latin
- Semitic languages (Arabic, Hebrew, ...)
- Slovenian
- Lithuanian
- Armenian

Relation between the two indices

- Opposition between fusional and agglutinative would not be applicable to purely isolating languages (there are no purely isolating languages though)
- Correlation:
 - Strongly synthetic languages are usually agglutinative
 - Can be explained functionally via learnability considerations: polysynthetic fusional languages would have an extremely high number of morphemes and would therefore be unlearnable.

1) isolating type

```
Mandarin
```

```
ta bu hui yong dao chi fan he no can use knife eat rice "He cannot eat rice with a knife"
```

2) agglutinative type

Turkish

```
ev \rightarrow house (nom. sg.)

ev-ler \rightarrow houses (nom. pl.)

ev-i \rightarrow his/her house (sg.+poss.)

ev-ler-i \rightarrow his/her houses (pl.+poss.)

ev-den \rightarrow in front of the house (sg.+abl.)

ev-ler-den \rightarrow in front of the houses (pl.+abl.)
```

Aztecan

```
nikita\rightarrow I see itkita\rightarrow he sees itkinita\rightarrow he sees themkitas\rightarrow he will see itkitak\rightarrow he saw ittikinita\rightarrow you(pl.) see themnikitak\rightarrow I saw itkitakeh\rightarrow they saw itkinitakeh\rightarrow they saw them
```

3) fusional type

```
Latin: "am-o"
1. sg. ind. pres. active ("I love")
```

4) polysynthetic type

```
Yup'ik (Alaska)
angya-li- ciq- sugnar- quq- llu
boat- make-FUT- PROB- 3sg.NOM-also
'Also, he probably will make a boat'
```

The three faces of English

Isolating:

The boy will ask the girl

Synthetic:

The biggest boys have been asking

Agglutinative:

anti-dis-establish-ment-arian-ism

Position of German

- Synthesis index
 - Somewhere in the middle, but closer towards the synthetic languages
- Fusion index
 - Strong tendency to fusional language type

Exercises

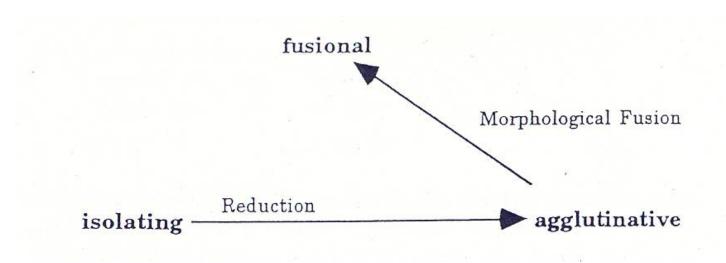
- Name examples for agglutinative and for fusional aspects of your native language or some other language you know well.
- English is largely, but not exclusively isolating. Where would you locate it on the fusion scale?
- Classify further languages that you know.

- Language change usually involves phonological reduction
- Effect is strongest for most frequent phoneme sequences
 - zu dem > zum
 - hat er es > hat ers
 - laufen > lauf'n
 - let us > let's
 - (ahd) brenjan > (nhd) brennen

- Phonological reduction results in
 - Reduction of independent words to affixes
 - Fusion of neighboring morphemes
 - Complete loss of morphemes

Reduction of independent words to affixes

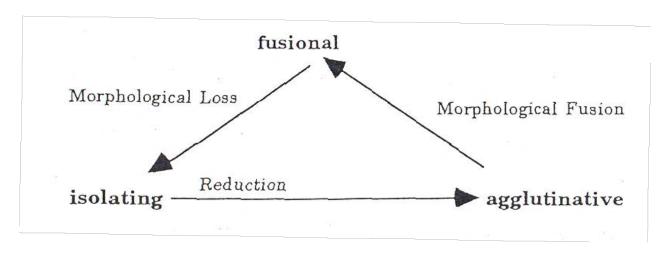
```
Semantic
and
Phonological Reduction
isolating agglutinative
```


Eg: Melanesian Pidging

```
(12) a. aus blonmi \rightarrow aus blo-mi "my house" house of me house of-me b. long aus \rightarrow l-aus "at home" at house at-house
```

- Phonological reduction results in
 - Fusion of neighboring morphemes
 - eg. Paamese (Austronesian language)
 (in historical linguistics, an asterisk does not denote "ungrammatical", but "this form is not documented, but reconstructed")

```
    (13) a. *na-i-lesi-ø → ni-lesi-ø "I will see it."
    I-FUT-see-it I:FUT-see-it
    b. *ko-i-lesi-nau → ki-lesi-nau "You will see me."
    you-FUT-see-me you:FUT-see-me
```


- Phonological reduction results in
 - Fusion of neighboring morphemes

Phonological reduction results in

- Complete loss of morphemes
- eg. in modern German

am Tische > am Tisch

Geographical distribution of morphological types

- Fusion of TAM/case:
 - WALS feature description
 - WALS map
- Inflectional synthesis of verb
 - WALS feature description
 - WALS map