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Sentences and statements

1 You again!

2 Has the lecture already started?

3 Could you please tell me how I can get to the bus stop of the line
4?

4 One year ago, there were 891 students of philosophy at the
University of Bielefeld.

These are all grammatical sentences.

logically interesting sentences must be able to have a truth value

Question: Which example sentence can, in principle, have a truth
value?
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Sentences and statements

Truth value of (4) depends on time of utterance

similar examples

(5) Charlemagne was appointed emperor here in 800 A.D.

(6) Today is Tuesday.

(7) John is coming over there.

(8) The window is to the left of the door.
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Sentences and statements

Truth value of these sentences depends on utterance situation

in other words: in different utterance situations, these sentences
express different statements

responsible for this effect: deictic (also called indexical
expressions here, there, to the left, to the right, now, tomorrow,
last year, I, you, ...)
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Sentences and statements

Statements are sentences that are, in principle, either true or
false.

Statement logic and predicate logic only deal with statements
the truth of which do not depend on the situation in which
they are uttered.
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Sentences and statements

Which of the following sentences express statements in the sense of
statement logic?

(9) The Zugspitze is Germany’s highest mountain.

(10) I have shown you his letter, here and today.

(11) Please give me the salt!

(12) Did you sleep well?

(13) How utterly beautiful!
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Statement logic: connectives

linguistic means to construct new statements out of smaller
statements

examples:

by no means; and; but; Peter knows, that; or; if ... then; if and only iff;
perhaps
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Negation

If a statement is true, its negation is false (and vice versa).

Statement

(14) Peter is in Berlin.

Possible expressions for negation:
(15) a. Peter is not in Berlin

b. It is not the case that Peter is in Berlin.
c. It is not true that Peter is in Berlin.

schematically:

statement: ϕ
negation: ¬ϕ
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Negation

truth values: “true” and “false”

schematically: 1 (for “true”) and 0 (for “false”)

truth table for negation

ϕ ¬ϕ
1 0
0 1
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Conjunction

conjunction: combines two statements

conjunction is true if and only if both conjuncts are true

e.g.: statements:
(16) a. Wolfgang sleeps.

b. Wolfgang snores.

conjunktion:
(17) a. Wolfgang sleeps and Wolfgang snores.

b. Wolfgang sleeps and snores.
c. Wolfgang sleeps, and he also snores.
d. Wolfgang both sleeps and snores.
e. ...
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Conjunction

schematically

statements: ϕ,ψ
conjunction: ϕ ∧ ψ

truth table:

ϕ ψ ϕ ∧ ψ
1 1 1
1 0 0
0 1 0
0 0 0
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Disjunction

disjunction: combines two statements

is true if and only if at least one of the two components is true

e.g.:
(18) a. It rains.

b. It is dark.

disjunction:

(19) It rains or it is dark.
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Disjunction

schematically:

statements: ϕ,ψ
disjunction: ϕ ∨ ψ

truth table:

ϕ ψ ϕ ∨ ψ
1 1 1
1 0 1
0 1 1
0 0 0
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Inclusive and exclusive or

disjunction corresponds to inclusive “or”

intended meaning:
(20) a. It rains and/or it is dark.

b. It rains or it is dark or both.

there is also an exclusive sense of “or”

“or” can mean either in German

example:
(21) a. Either we go to the movies or to the zoo.

b. We either go to the movies or to the zoo, but not both.
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XOR

exclusive or is modeled by different logical operator: XOR

schematically: ϕ∞ψ

truth table:
ϕ ψ ϕ∞ψ

1 1 0
1 0 1
0 1 1
0 0 0

Unless otherwise indicated, we will henceforth use “or” in the
sense of disjunction.
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Implication

statements: ϕ,ψ

implication: ϕ→ ψ

to be read as: ”‘ϕ implies ψ”’

truth table:
ϕ ψ ϕ→ ψ

1 1 1
1 0 0
0 1 1
0 0 1
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Implication

related to conditional construction

If ..., then ...

For all four truth value combination there are corresponding
English examples with conditional construction:

1 (true – true): If 2+2=4, then 2+3=5. (true)
2 (true – false): If 2+2=4, then 2+3=4. (false)
3 (false – true): If 1=2 and 2=1, then 3=3.

(true)
4 (false – false): If 1=2, then 2=3. (true)
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Implication

Bertrand Russell, in a lecture on logic, mentioned that in the sense of
material implication, a false proposition implies any proposition. A student
raised his hand and said ”‘In that case, given that 1 = 0, prove that you
are the Pope”’. Russell immediately replied, ”‘Add 1 to both sides of the
equation: then we have 2 = 1. The set containing just me and the Pope
has 2 members. But 2 = 1, so it has only 1 member; therefore, I am the
Pope.”’
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Implication

If there is no intrinsic connection between the content of ϕ and ψ,
an implication may be true while the corresponding conditional
statement is at least questionable.

(22) a. If 1 = 0, then Bertrand Russell is the pope. (unclear whether true
or false)

b. 1 = 0 implies that Bertrand Russell is the pope. (true)

(23) a. If the moon is made from green cheese, then it is made from
chocoloate. (probably false)

b. That the moon is made from green cheese implies that it is made
from chocolade. (true)
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Equivalence

statements: ϕ,ψ

combined statement: ϕ↔ ψ

to be read as ”‘ϕ is equivalent to ψ”’

ϕ ψ ϕ↔ ψ

1 1 1
1 0 0
0 1 0
0 0 1
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Equivalence

related to the English constructions

ϕ if and only if ψ
ϕ just in case that ψ
ϕ is a necessary and sufficient condition for ψ

similar provisos apply as to the identification of the implication
with the conditional construction1

1Please note that Partee et al. use the terms “conditional” and “biconditional” for
implication and equivalence respectively. For the reasons mentioned above, I prefer the
more neutral terms.
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Syntax of statement logic

A language of statement logic consists of a (usually infinite) set of atomic
statements. These are statements that do not consist of statements
themseleves.

Peter sleeps is an atomic statement.

Peter smiles when he sleeps is not an atomic statement.

Since the internal structure of atomic statements is irrelevant for
statement logic, we mostly use symbols like

p, q, r, p1, q5, r
′, r′′, ..

as atomic statements (“statement variables”).
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Syntax of statement logic

Definition

Let A be a set of atomic statements.

1 Every statement in A is a formula L(A).
2 If ψ is a formula in L(A), then ¬ψ is also a formula in L(A).
3 If ϕ and ψ are formulas in L(A), then (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ)

and (ϕ↔ ψ) are also formulas in L(A).
4 There are no other formulas in L(A).
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Syntax of statement logic

Which of the following expressions are formulas of a language of statement
logic?

¬(¬p ∨ q) p ∨ (q)
¬(q) (p2 → (p2 → (p2 → p2)))
(p→ ((p→ q))) ((p→ p)→ (q → q))
((p28 → p3)→ p4) (p→ (p→ q)→ q)
(p ∨ (q ∨ r)) (p ∨ q ∨ r)
(¬p ∨ ¬¬p) (p ∨ p)
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Bracketing conventions

redundant brackets can be omitted

Conventions:

outermost brackets are omitted
¬ associates strongest, followed by ∧, ∨, →, ↔ (in this order)
operators are right associative:

p→ q → r = (p→ (q → r))
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Semantics of statement logic

valuation function V : Function that assigns each formula of a
language of propositional logic a truth value

admissible valuation functions must agree with the interpretation
of the logical connectives:
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Semantics of statement logic

Definition

A function V from the formulas of a language of statement logic L(A)
into the set of truth values {0, 1} is a valuation function iff it holds for
all formula ϕ and ψ:

1 V (¬ϕ) = 1− V (ϕ)

2 V (ϕ ∧ ψ) = V (ϕ)× V (ψ)

3 V (ϕ ∨ ψ) = V (ϕ) + V (ψ)− V (ϕ)× V (ψ)

4 V (ϕ→ ψ) = 1− V (ϕ)× (1− V (ψ))

5 V (ϕ↔ ψ) = 1− (V (ϕ)− V (ψ))2
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Semantics of statement logic

every operator corresponds to a function over truth values

arithmetic defintion is equivalent to the truth table given above

truth value of a complex formula ϕ under V is uniquele
determined by the truth values of the atomic statements that
occur in ϕ under V
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Semantics of statement logic

to compute the truth conditions of a complex formula ϕ,

it is not necessary to consider all conceivable valuation functions,
but
only all possible combinations of truth values of the atomic
statements that occur in ϕ, i.e.
2n different combinations of truth values, for n atomic statements.
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Semantics of statement logic

p q ¬p ¬q ¬p ∧ ¬q ¬(¬p ∧ ¬q)
V1 1 1

0 0 0 1

V2 1 0

0 1 0 1

V3 0 1

1 0 0 1

V4 0 0

1 1 1 0
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Semantics of statement logic

p q ¬p ¬q ¬p ∧ ¬q ¬(¬p ∧ ¬q)
V1 1 1 0

0 0 1

V2 1 0 0

1 0 1

V3 0 1 1

0 0 1

V4 0 0 1

1 1 0
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Semantics of statement logic

p q ¬p ¬q ¬p ∧ ¬q ¬(¬p ∧ ¬q)
V1 1 1 0 0

0 1

V2 1 0 0 1

0 1

V3 0 1 1 0

0 1

V4 0 0 1 1

1 0
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Semantics of statement logic

p q ¬p ¬q ¬p ∧ ¬q ¬(¬p ∧ ¬q)
V1 1 1 0 0 0

1

V2 1 0 0 1 0

1

V3 0 1 1 0 0

1

V4 0 0 1 1 1

0
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Semantics of statement logic

p q ¬p ¬q ¬p ∧ ¬q ¬(¬p ∧ ¬q)
V1 1 1 0 0 0 1
V2 1 0 0 1 0 1
V3 0 1 1 0 0 1
V4 0 0 1 1 1 0
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