Mathematics for linguists

Gerhard Jäger

University of Tübingen

December 7, 2010

Sets

Georg Cantor (1845-1918)

"A set is a collection into whole of definite, distinct objects of our intuition or our thought. The objects are called the elements of the set."

- Every well-defined object can be member/element of a set
- Sets can be members of other sets.
- The question of membership must be answerable in principle.
- Sets can be finite or infinite.

Sets

- special sets
 - singleton sets (contain exactly one element): $\{a\}$
 - the empty set (contains no element): ∅ (also written as 0 or {})
- notational conventions:
 - A, B, C, \ldots variables over sets
 - a, b, c, \ldots, x, y, z : variable over elements of sets
 - $a \in A$: a is an element of A
 - $a \notin A$: a is not an element of A
 - important: since sets can be elements of other sets, we sometimes find expressions like $A \in {\cal B}$

Ways to describe sets

- four ways to describe sets
 - list notation
 - separation notation
 - recursive definition
 - set theoretic operations

Ways to describe sets: List notation

- only applicable to finite sets
- names of the elements are listed between curly brackets
- example:

$$A = \{ the Volga, Nicolas Sarkozy, 16 \}$$

can alseo be written as

$$A = \{ \textit{Europe's longest river, the French president, the number of federal states in Germay} \}$$

order is irrelevant:

$$A = \{16, the Volga, Nicolas Sarkozy\}$$

Ways to describe sets: List notation

• it is also inessential how often an object is named in list notation $A = \{ \textit{the president of France, Nicolas Sarkozy, the winner of the last presidential election in France, <math>4^2$, 16, the Volga, $\sqrt{256} \}$

Ways to describe sets: separation notation

- Set of all objects of a domain that share a certain property
- domain must also be a set
- domain has to be well-defined, before it can be used to define other sets
- notation:

```
\{ \ variable \in domain \mid sentence \ that \ contains \ the \ variable \ \} or \{ \ variable \in domain : sentence \ that \ contains \ the \ variable \ \}
```

Ways to describe sets: separation notation

- examples:
 - $\{x \in \mathbb{N} | x \text{ is even}\}$
 - $\{x \in \mathbb{N} | x 10 \ge 0\}$
 - $\{x \in \mathbb{R} | x^2 = 2\}$
- domain is frequently omitted if it is clear from the context

Russell's paradox

Why is it so important to always specify a domain when definint a set? The English philosopher Bertrand Russell showed in 1901 that otherwise (via so-called "unconstrained comprehension") it is possible to derive contradictions. For instance, consider:

$$R = \{x | x \not\in x\}$$

Does the following hold:

$$R \in R$$
?

Suppose $R \in R$. Then R must have the defining property, i.e. $R \not\in R$. On the other hand, if $R \not\in R$, then R has the defining property, and thus $R \in R$. In either case, we end up with a contradiction.

It doesn't help to prohibit that a set contains itself. Then ${\cal R}$ would be the set of all sets, which would have to contain itself after all, so we would end up with a

Russell's paradox

In modern set theory, it is usually assumed that (contra Cantor) not every collection of well-defined object automatically constitutes a set. Whether or not a collection of objects is a set is something which has to be proved. In particular, the collection of all sets is itself not a set.

The four ways to define sets that are discuessed here only produce collections that are, in fact, provably sets.

Ways to describe sets: recursive definition

- consists of three components:
 - a finite list of objects that definitels belong to the set to be defined
 - vules that allow to generate new elements from existing elements
 - 3 statement, that all elements of the set in question can be generated via finitely many application of the rule from (2) to the objects from (1)

Spezifikation von Mengen: rekursive Definition

- example:
 - $\mathbf{0} \ 4 \in E$

 - \odot Nothing else is in E.

alternative Definition via separation: $\{x \in \mathbb{N} | x \text{ is even and } x \geq 4\}$

- another example:
 - ullet Genghis Khan $\in D$
 - If $x \in D$ and y is a son of x, then $y \in D$.
 - Nothing else is in D.

 ${\cal D}$ is the set which consists of Genghis Khan and all its male descendents.

Set theoretic operations: set union

- $A \cup B$: set union (or just "union") of A and B
- ullet set of all objects that are element of A or of B (or both)
- \bullet example: Let $K=\{a,b\}$, $L=\{c,d\}$ and $M=\{b,d\}$

$$\begin{array}{lll} K \cup L & = & \{a,b,c,d\} \\ K \cup M & = & \{a,b,d\} \\ L \cup M & = & \{b,c,d\} \\ (K \cup L) \cup M & = & K \cup (L \cup M) & = & \{a,b,c,d\} \\ K \cup \emptyset & = & \{a,b\} & = & K \\ L \cup \emptyset & = & \{c,d\} & = & L \end{array}$$

• If A is a set of sets, we write $\bigcup A$ for the union of all elements of A. Instad of $B \cup C$ we could also write $\bigcup \{B,C\}$.

Set theoretic operations: set union

graphical representation in a Venn diagram

Set theoretic operations: set intersection

- $A \cap B$: intersection of A and B
- ullet set of all objects, that are both member of A and of B
- ullet example: Let $K=\{a,b\}$, $L=\{c,d\}$ and $M=\{b,d\}$

$$\begin{array}{lll} K\cap L & = & \emptyset \\ L\cap M & = & \{d\} \\ K\cup K & = & \{a,b\} & = & K \\ K\cap \emptyset & = & \emptyset \\ (K\cap L)\cap M & = & K\cap (L\cap M) & = & \emptyset \\ K\cap (L\cup M) & = & \{b\} \end{array}$$

• Intersection can be generalized to all sets of sets as well. $\bigcap A$ is the set of all objects, that are a member of all members of A.

Set theoretic operations: set intersection

representation in Venn diagram

Set theoretic operations: relative complement

- A-B (also written as $A \setminus B$): relative complement of B in A
- ullet set of all objects, that are an element of A, but not of B
- ullet examples: Let $K=\{a,b\}$, $L=\{c,d\}$ and $M=\{b,d\}$

$$K - M = \{a\}$$

$$L - K = \{c, d\} = L$$

$$M - L = \{b\}$$

$$K - \emptyset = \{a, b\} = K$$

$$\emptyset - K = \emptyset$$

Set theoretic operations: relative complement

representation in Venn diagram

Set theoretic operations: absolute complement

- A' (also written as \overline{A} or -A): absolute complement of A
- set of all objects that are not element of A
- \bullet only well-defined against the background of a (usually implicit) universe U
- more precise notation: U A

Set theoretic operations: relative complement

representation in Venn diagram

Identity of sets

- the same set can be defined in different ways
- for instance:

 - **2** $A = \{x \in \mathbb{N} | x > 0 \text{ und } x < 6\}$
 - \bullet $1 \in A$; if $x \in A$ and x < 5, then $x + 1 \in A$; nothing else is in A

When do two descriptions define the same set?

Identity of sets

Two sets are identical if and only if they have the same elements.

In other words, A=B iff every element of A is also an element of B, and every element of B is also an element of A.

- $A \subseteq B$: A is a subset B
- Every element of A is also an element of B.
- B may contain more elements than those from A, but this need not be the case
- $A \not\subseteq B$: A is not a subset of B.
- $A \subset B$: A is a proper subset of B
- ullet A is a subset of B, and B contains at least one element that is not in A
- Equivalently:

$$A \subset B$$
 iff $A \subseteq B$ and $B \not\subseteq A$

- ullet $A\supseteq B$: A is a superset of B
- $A \supseteq B$ iff $B \subseteq A$

Examples:

- **1** $\{a, b, c\} \subseteq \{s, b, a, e, g, i, c\}$

- **1** $\{a, b, c\} \subseteq \{s, b, a, e, g, i, c\}$
- **2** $\{a, b, j\} \not\subseteq \{s, b, a, e, g, i, c\}$

- **2** $\{a, b, j\} \not\subseteq \{s, b, a, e, g, i, c\}$

- **1** $\{a, b, c\} \subseteq \{s, b, a, e, g, i, c\}$
- **3** $\{a, b, c\} \subset \{s, b, a, e, g, i, c\}$

- **1** $\{a, b, c\} \subseteq \{s, b, a, e, g, i, c\}$
- **3** $\{a, b, c\} \subset \{s, b, a, e, g, i, c\}$

- **6** $\{a\} \not\subseteq \{\{a\}\}$

- **1** $\{a, b, c\} \subseteq \{s, b, a, e, g, i, c\}$
- **3** $\{a, b, c\} \subset \{s, b, a, e, g, i, c\}$
- **5** $\{a, \{a\}\} \subseteq \{a, b, \{a\}\}$

- **1** $\{a, b, c\} \subseteq \{s, b, a, e, g, i, c\}$
- **3** $\{a, b, c\} \subset \{s, b, a, e, g, i, c\}$
- **5** $\{a, \{a\}\} \subseteq \{a, b, \{a\}\}$
- **6** $\{a\} \not\subseteq \{\{a\}\}$
- $\emptyset \subseteq A$ for arbitrary sets A

Note:

The element-of relation and the subset-relation have to be clearly distinguished!

for instance:

$$\begin{array}{ccc} a & \in & \{a\} \\ a & \not\subseteq & \{a\} \end{array}$$

or

$$\{a\} \subseteq \{a, b, c\}$$

$$\{a\} \notin \{a, b, c\}$$

Note:

Subset relation is transitive:

If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Set theoretic operations: power set

- $\wp(A)$ (sometimes written POW(A), Pot(A) or 2^A): power set of A
- set of all subsets A
- exmples:

4
$$\wp(\{a\}) = \{\emptyset, \{a\}\}$$

- If A is finite and has n elements, then $\wp(A)$ always has 2^n elements.
- For all sets A: $\emptyset \in \wp(A)$ and $A \in \wp(A)$.

Cardinality of sets

- |A| (sometimes also written als #(A)): cardinality of A
- ullet for empty sets: |A| is the number of elements of A
- examples:
 - **1** $|\emptyset| = 0$
 - $|\{a\}| = 1$
 - **3** $|\{\emptyset\}| = 1$
 - $|\{a,\{b,c,d\}\}| = 2$
- cardinality is also defined for infinite sets
- |A| = |B| iff there is a one-one mapping between A and B. (The notion of a one-one mapping will be introduced later in this course.)
- Not all infinite sets have the same cardinality

Set theoretic laws

- idempotence laws:

 - $A \cap A = A$
- commutativity laws:

 - $A \cap B = B \cap A$
- associativity laws:

 - $(A \cap B) \cap C = A \cap (B \cap C)$
- distributivity laws:
 - $\bullet A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Set theoretic laws

- identity laws:

 - $A \cup U = U$
 - $A \cap \emptyset = \emptyset$
 - $A \cap U = A$
- complement laws:
 - $A \cup A' = U$
 - (A')' = A
 - $\overset{\smile}{\mathbf{a}}\stackrel{\smile}{\cap}A'=\emptyset$
 - $A B = A \cap B'$
- Oe Morgan's laws:

 - $(A \cap B)' = A' \cup B'$
- consistency principle:
 - $\bullet \quad A \subseteq B \text{ iff } A \cup B = B$
 - $A \subseteq B \text{ iff } A \cap B = A$