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University of Tübingen
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Sets

Georg Cantor (1845-1918)

“A set is a collection into whole of definite, distinct objects of our intuition
or our thought. The objects are called the elements of the set.”

Every well-defined object can be member/element of a set

Sets can be members of other sets.

The question of membership must be answerable in principle.

Sets can be finite or infinite.
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Sets

special sets

singleton sets (contain exactly one element): {a}
the empty set (contains no element): ∅ (also written as 0 or {})

notational conventions:

A,B,C, . . .: variables over sets
a, b, c, . . . , x, y, z: variable over elements of sets
a ∈ A: a is an element of A
a 6∈ A: a is not an element of A
important: since sets can be elements of other sets, we sometimes
find expressions like A ∈ B
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Ways to describe sets

four ways to describe sets

list notation
separation notation
recursive definition
set theoretic operations
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Ways to describe sets: List notation

only applicable to finite sets

names of the elements are listed between curly brackets

example:

A = {the Volga, Nicolas Sarkozy, 16}
can alseo be written as

A = {Europe’s longest river, the French president, the number of
federal states in Germay}

order is irrelevant:

A = {16, the Volga, Nicolas Sarkozy}
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Ways to describe sets: List notation

it is also inessential how often an object is named in list notation

A = {the president of France, Nicolas Sarkozy, the winner of the
last presidential election in France, 42, 16, the Volga,

√
256}
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Ways to describe sets: separation notation

Set of all objects of a domain that share a certain property

domain must also be a set

domain has to be well-defined, before it can be used to define
other sets

notation:

{ variable ∈ domain | sentence that contains the variable }
or

{ variable ∈ domain : sentence that contains the variable }
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Ways to describe sets: separation notation

examples:

{x ∈ N|x is even}
{x ∈ N|x− 10 ≥ 0}
{x ∈ R|x2 = 2}

domain is frequently omitted if it is clear from the context
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Russell’s paradox

Why is it so important to always specify a domain when definint a set?
The English philosopher Bertrand Russell showed in 1901 that otherwise
(via so-called “unconstrained comprehension”) it is possible to derive
contradictions. For instance, consider:

R = {x|x 6∈ x}

Does the following hold:
R ∈ R?

Suppose R ∈ R. Then R must have the defining property, i.e. R 6∈ R. On
the other hand, if R 6∈ R, then R has the defining property, and thus
R ∈ R. In either case, we end up with a contradiction.
It doesn’t help to prohibit that a set contains itself. Then R would be the
set of all sets, which would have to contain itself after all, so we would end
up with a
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Russell’s paradox

In modern set theory, it is usually assumed that (contra Cantor) not every
collection of well-defined object automatically constitutes a set. Whether
or not a collection of objects is a set is something which has to be proved.
In particular, the collection of all sets is itself not a set.
The four ways to define sets that are discuessed here only produce
collections that are, in fact, provably sets.
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Ways to describe sets: recursive definition

consists of three components:
1 a finite list of objects that definitels belong to the set to be defined
2 rules that allow to generate new elements from existing elements
3 statement, that all elements of the set in question can be generated

via finitely many application of the rule from (2) to the objects
from (1)
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Spezifikation von Mengen: rekursive Definition

example:
1 4 ∈ E
2 If x ∈ E, then x+ 2 ∈ E.
3 Nothing else is in E.

alternative Definition via separation: {x ∈ N|x is even and x ≥ 4}
another example:

Genghis Khan ∈ D
If x ∈ D and y is a son of x, then y ∈ D.
Nothing else is in D.

D is the set which consists of Genghis Khan and all its male
descendents.
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Set theoretic operations: set union

A ∪B: set union (or just “union”) of A and B

set of all objects that are element of A or of B (or both)

example: Let K = {a, b}, L = {c, d} and M = {b, d}

K ∪ L = {a, b, c, d}
K ∪M = {a, b, d}
L ∪M = {b, c, d}
(K ∪ L) ∪M = K ∪ (L ∪M) = {a, b, c, d}
K ∪ ∅ = {a, b} = K

L ∪ ∅ = {c, d} = L

If A is a set of sets, we write
⋃
A for the union of all elements of

A. Instad of B ∪ C we could also write
⋃
{B,C}.

Gerhard Jäger (University of Tübingen) Mathematics for linguists December 7, 2010 13 / 30



Set theoretic operations: set union

graphical representation in a Venn diagram
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Set theoretic operations: set intersection

A ∩B: intersection of A and B

set of all objects, that are both member of A and of B

example: Let K = {a, b}, L = {c, d} and M = {b, d}

K ∩ L = ∅
L ∩M = {d}
K ∪K = {a, b} = K

K ∩ ∅ = ∅
(K ∩ L) ∩M = K ∩ (L ∩M) = ∅
K ∩ (L ∪M) = {b}

Intersection can be generalized to all sets of sets as well.
⋂
A is

the set of all objects, that are a member of all members of A.
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Set theoretic operations: set intersection

representation in Venn diagram
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Set theoretic operations: relative complement

A−B (also written as A \B): relative complement of B in A

set of all objects, that are an element of A, but not of B

examples: Let K = {a, b}, L = {c, d} and M = {b, d}

K −M = {a}
L−K = {c, d} = L

M − L = {b}
K − ∅ = {a, b} = K

∅ −K = ∅
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Set theoretic operations: relative complement

representation in Venn diagram
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Set theoretic operations: absolute complement

A′ (also written as A or −A): absolute complement of A

set of all objects that are not element of A

only well-defined against the background of a (usually implicit)
universe U

more precise notation: U −A
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Set theoretic operations: relative complement

representation in Venn diagram
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Identity of sets

the same set can be defined in different ways

for instance:
1 A = {1, 2, 3, 4, 5}
2 A = {x ∈ N|x > 0 und x < 6}
3 1 ∈ A; if x ∈ A and x < 5, then x+ 1 ∈ A; nothing else is in A

When do two descriptions define the same set?

Identity of sets

Two sets are identical if and only if they have the same elements.

In other words, A = B iff every element of A is also an element of B, and
every element of B is also an element of A.
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Subsets

A ⊆ B: A is a subset B

Every element of A is also an element of B.

B may contain more elements than those from A, but this need
not be the case

A 6⊆ B: A is not a subset of B.

A ⊂ B: A is a proper subset of B

A is a subset of B, and B contains at least one element that is
not in A

Equivalently:
A ⊂ B iff A ⊆ B and B 6⊆ A
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Subsets

A ⊇ B: A is a superset of B

A ⊇ B iff B ⊆ A
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Subsets

Examples:

1 {a, b, c} ⊆ {s, b, a, e, g, i, c}

2 {a, b, j} 6⊆ {s, b, a, e, g, i, c}
3 {a, b, c} ⊂ {s, b, a, e, g, i, c}
4 ∅ ⊂ {a}
5 {a, {a}} ⊆ {a, b, {a}}
6 {a} 6⊆ {{a}}
7 {{a}} 6⊆ {a}
8 ∅ ⊆ A for arbitrary sets A

9 but: {∅} 6⊆ {a}
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Subsets

Note:

The element-of relation and the subset-relation have to be clearly
distinguished!

for instance:

a ∈ {a}
a 6⊆ {a}

or

{a} ⊆ {a, b, c}
{a} 6∈ {a, b, c}
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Subsets

Note:

Subset relation is transitive:
If A ⊆ B and B ⊆ C, then A ⊆ C.
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Set theoretic operations: power set

℘(A) (sometimes written POW (A), Pot(A) or 2A): power set of
A

set of all subsets A

exmples:
1 ℘({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
2 ℘(∅) = {∅}
3 ℘(℘(∅)) = {∅, {∅}}
4 ℘({a}) = {∅, {a}}

If A is finite and has n elements, then ℘(A) always has 2n

elements.

For all sets A: ∅ ∈ ℘(A) and A ∈ ℘(A).
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Cardinality of sets

|A| (sometimes also written als #(A)): cardinality of A

for empty sets: |A| is the number of elements of A

examples:
1 |∅| = 0
2 |{a}| = 1
3 |{∅}| = 1
4 |{a, {b, c, d}}| = 2

cardinality is also defined for infinite sets

|A| = |B| iff there is a one-one mapping between A and B. (The
notion of a one-one mapping will be introduced later in this
course.)

Not all infinite sets have the same cardinality

Gerhard Jäger (University of Tübingen) Mathematics for linguists December 7, 2010 28 / 30



Set theoretic laws

1 idempotence laws:
1 A ∪A = A
2 A ∩A = A

2 commutativity laws:
1 A ∪B = B ∪A
2 A ∩B = B ∩A

3 associativity laws:
1 (A ∪B) ∪ C = A ∪ (B ∪ C)
2 (A ∩B) ∩ C = A ∩ (B ∩ C)

4 distributivity laws:
1 A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
2 A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
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Set theoretic laws

1 identity laws:
1 A ∪ ∅ = A
2 A ∪ U = U
3 A ∩ ∅ = ∅
4 A ∩ U = A

2 complement laws:
1 A ∪A′ = U
2 (A′)′ = A
3 A ∩A′ = ∅
4 A−B = A ∩B′

3 De Morgan’s laws:
1 (A ∪B)′ = A′ ∩B′

2 (A ∩B)′ = A′ ∪B′

4 consistency principle:
1 A ⊆ B iff A ∪B = B
2 A ⊆ B iff A ∩B = A
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