Mathematics for linguists

Gerhard Jäger

University of Tübingen

October 21, 2010

Translation English ⇒ statement logic

- motivation for translation:
 - English as object-language: translation admits modeling of the semantics of English using the means of logic
 - English as meta-language: translation helps to make the notion of the valid argument precise

A statement A is an adequate translation of a statement A^\prime if and only if A and A^\prime have the same truth conditions.

Translation

- ullet translation of an English statement A consists of
 - ullet a statement A' of statement logic, and
 - ullet conditions for the valuation V of statement logic
- a good translation of A is
 - as poor in structure as possible, and
 - ullet as similar in structure as possible to A

Example

- English:
 - (1) Paul is not smart.
- translation:
 - (2) a. $\neg p$ b. p: Paul is smart.
- rule of thumb: If an English statement that contains "not" (or "n't") can be paraphrased without problems by a formulation using "it is not the case that", then A can be translated into a negated formula.

paraphrase test is also useful for other English expressions for negation:

- English:
 - (3) Franz Beckenbauer owns no cars.
- paraphrase:
 - (4) It is not the case that Franz Beckenbauer owns a car.
- translation:
 - (5) a. $\neg p$
 - b. p: Franz Beckenbauer owns a car.

- Further examples:
- (6) a. Nobody is smarter than John.
 - b. It is not the case that somebody is smarter than John.
 - c. $\neg p/p$: Somebody is smarter than John.
- (7) a. Fritz donated *nothing*.
 - b. It is not the case that Fritz donated something.
 - c. $\neg p/p$: Fritz donated something.
- (8) a. Neither John nor Peter are in Tübingen.
 - b. It is not the case that John or Peter is in Tübingen.
 - c. $\neg p/p$: John or Peter is in Tübingen.

- (9) a. John is *un*reasonable.
 - b. It is not the case that John is reasonable.
 - c. $\neg p/p$: John is reasonable.

but:

- (10) a. John unloads the truck.
 - **b**. \neq It is not the case that John loads the truck.
 - c. (correct translation:) p/p: John unloads the truck.

- (11) a. John is blond and John is six feet tall.
 - b. $p \wedge q$
 - c. p: John is blond.
 - d. q: John is six feet tall.
- (12) a. John is blond and six feet tall.
 - b. (paraphrase:) John is blond and John is six feet tall.
 - c. $p \wedge q$
 - d. p: John is blond.
 - e. q: John is six feet tall.

- (13) a. John and Paul are good swimmers.
 - b. John is a good swimmer and Paul is a good swimmer.
 - c. $p \wedge q$
 - d. p: John is a good swimmer. q: Paul is a good swimmer.
 - rule of thumb: If a statement A that contains "and" can be paraphrased by a sentence where "and" connects two clauses, then A can be translated as a conjunction.

but:

- (14) a. John and Gerda are married.
 - b. \neq John is married and Gerda is married.
 - c. (correct translation:) p
 - d. p: John and Gerda are married.

- further ways to express conjunctive statements:
- (15) a. John is both stupid and lazy.
 - b. John is stupid and John is lazy.
 - c. $p \wedge q$
 - d. p: John is stupid. q: John is lazy.
- (16) a. John is not stupid, but he is lazy.
 - b. John is not stupid and John is lazy.
 - c. $\neg p \land q$
 - d. p: John is stupid. q: John is lazy.

- (17) a. Even though Helga is engaged to Paul, she does not love him.
 - b. Helga is engaged to Paul, and Helga does not love Paul.
 - c. $p \wedge \neg q$
 - d. p: Helga is engaged to Paul. q: Helga loves Paul.

Translation: disjunction

- regarding the problem of exclusive vs. inclusive reading of "or":
 see last lecture
- apart from that, disjunction relates to "or" as conjunction to "and"
- (18) a. John is blond or John is six feet tall.
 - b. $p \vee q$
 - c. p: John is blond.
 - d. q: John is six feet tall.

Translation: disjunction

- (19) a. John is blond or six feet tall.
 - b. (paraphrase:) John is blond or John is six feet tall.
 - c. $p \lor q$
 - d. p: John is blond.
 - e. q: John is six feet tall.
- (20) a. John or Paul is a good swimmer.
 - b. John is a good swimmer or Paul is a good swimmer.
 - c. $p \lor q$
 - d. p: John is a good swimmer. q: Paul is a good swimmer.

Translation: implication

- There is no real counterpart to implication in English.
- Some grammatical constructions can approximately translated by implications.
- rule of thumb: Suppose A is an English statement which might possibly be translated as an implication $\varphi \to \psi$. To test the adequacy of this translation, it is important to understand under what conditions A is false. If the translation is correct, then under these very conditions, φ must be true and ψ false.

Translation: implication

- (21) a. If John is the father of Paul, then John is older than Paul.
 - b. $p \rightarrow q$
 - c. p: John is the father of Paul.
 - d. q: John is older than Paul.
- (22) a. John will come to the party only if Helga comes.
 - b. $p \rightarrow q$
 - c. p: John will come to the party.
 - d. q: Helga will come to the party.

Translation: implication

- (23) a. That x is even is a *necessary condition* that x is divisible by 4.
 - b. $p \rightarrow q$
 - c. p:x is divisible.
 - d. q:x is even.
- (24) a. That x is divisible by 4 is a *sufficient condition* that x is even.
 - b. $p \rightarrow q$
 - c. p:x is divisible by 4.
 - d. q:x is even.

Translation: Equivalence

- (25) a. John comes to the party if and only if Paul comes.
 - b. $p \leftrightarrow q$
 - c. p: John comes to the party.
 - d. q: Paul comes to the party.
- (26) a. John comes to the party just in case Paul comes.
 - b. $p \leftrightarrow q$
 - c. p: John comes to the party.
 - d. q: Paul comes to the party.

Translation: equivalence

- (27)
- a. That the last digit in the decimal representation of x is 0 is a necessary and sufficient condition that x is divisible by 10.
- b. $p \leftrightarrow q$
- c. p: The last digit in the decimal representation of x is 0.
- d. q:x is divisible by 10.

Definition (Tautology)

A formula of statement logic φ is a **tautology** of statement logic, formally written as

$$\Rightarrow \varphi$$

if and only if it holds for all valuations V:

$$V(\varphi) = 1$$

- Tautologies are called logically true.
- Examples for tautologies:

$$p \vee \neg p, \neg (p \wedge \neg p), p \rightarrow q \rightarrow p, p \rightarrow \neg \neg p, p \rightarrow p \vee q, \dots$$

 Whether or not a formula is logically true can be decided with the help of truth tables. Logically true formulas are true under each valuation function, i.e. in each row.

	p	$\mid q \mid$	$q \rightarrow p$	$p \rightarrow q \rightarrow p$
V_1	1	1		
V_2	1	0		
V_3	0	1		
$V_1 V_2 V_3 V_4$	0	0		

	p	$\mid q \mid$	$q \rightarrow p$	$p \rightarrow q \rightarrow p$
V_1	1	1	1	
V_2	1	0	1	
V_3	0	1	0	
$V_1 V_2 V_3 V_4$	0	0	1	

	p	$\mid q \mid$	$q \rightarrow p$	$p \rightarrow q \rightarrow p$
V_1	1	1	1	1
V_2	1	0	1	1
V_3	0	1	0	1
$V_1 V_2 V_3 V_4$	0	0	1	1

Definition (Contradiction)

A formula φ is a **contradiction** of statement logic if and only if it holds for all valuation functions V:

$$V(\varphi) = 0$$

- Contradictions are called logically false.
- Examples for contradictions:

$$p \land \neg p, \neg (p \lor \neg p), (p \to \neg p) \land p, p \leftrightarrow \neg p, \dots$$

 Whether or not a formula is logically false can also be determined by using truth tables. Logically false formulas are false under each valuation function, i.e. in each row.

		$p \to \neg p$	$(p \to \neg p) \land p$
V_1	1		
V_1 V_2	0		

	p	$\neg p$	$p \to \neg p$	$(p \to \neg p) \land p$
V_1	1	0	0	0
V_2	0	0	1	0

Tautologies and contradictions

Theorem

If φ is a tautology, then $\neg \varphi$ is a contradiction.

Proof: Suppose the premise is correct and φ is a tautology. Let V be an arbitrary valuation function. By assumption, it holds that

$$V(\varphi) = 1$$

From this it follows that

$$V(\neg\varphi) = 0$$

due to the semantics of negation. Since we did not make any specific assumption about V, it holds for any V that $V(\neg\varphi)=0$. Hence, by definition, $\neg\varphi$ is a contradiction.

 \dashv

Tautologies and contradictions

Theorem

If φ is a contradiciton, then $\neg \varphi$ is a tautology.

Proof: Suppose the premise is correct and φ is a contradiction. Let V be an arbitrary valuation function. By assumption, it holds that

$$V(\varphi) = 0$$

From this it follows that

$$V(\neg \varphi) = 1$$

due to the semantics of negation. Since we did not make any specific assumption about V, it holds for any V that $V(\neg \varphi) = 0$. Hence, by definition, $\neg \varphi$ is a tautology.

 \dashv

Definition (Logical equivalence)

Two formulas φ and ψ are logically equivalent, formally written as

$$\varphi \Leftrightarrow \psi$$

if and only if for all valuation functions V it holds that:

$$V(\varphi) = V(\psi)$$

- Note: "Logical equivalence" is a meta-linguistic notion, while "equivalence" in the sense of ↔ is an operator of the object language.
- Logical equivalence can be decided with the help of truth tables as well.

	p	q	r	$p \wedge q$	$q \wedge r$	$p \wedge (q \wedge r)$	$(p \wedge q) \wedge r$
$\overline{V_1}$	1	1	1				
V_2	1	1	0				
V_3	1	0	1				
V_4	1	0	0				
V_5	0	1	1				
V_6	0	1	0				
V_7	0	0	1				
V_8	0	0	0				

$$(p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$$

	p	q	r	$p \wedge q$	$q \wedge r$	$p \wedge (q \wedge r)$	$(p \wedge q) \wedge r$
$\overline{V_1}$	1	1	1	1			
V_2	1	1	0	1			
V_3	1	0	1	0			
V_4	1	0	0	0			
V_5	0	1	1	0			
V_6	0	1	0	0			
V_7	0	0	1	0			
V_8	0	0	0	0			

$$(p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$$

	p	q	r	$p \wedge q$	$q \wedge r$	$p \wedge (q \wedge r)$	$(p \wedge q) \wedge r$
$\overline{V_1}$	1	1	1	1	1		
V_2	1	1	0	1	0		
V_3	1	0	1	0	0		
V_4	1	0	0	0	0		
V_5	0	1	1	0	1		
V_6	0	1	0	0	0		
V_7	0	0	1	0	0		
V_8	0	0	0	0	0		

$$(p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$$

	p	q	r	$p \wedge q$	$q \wedge r$	$p \wedge (q \wedge r)$	$(p \wedge q) \wedge r$
$\overline{V_1}$	1	1	1	1	1	1	
V_2	1	1	0	1	0	0	
V_3	1	0	1	0	0	0	
V_4	1	0	0	0	0	0	
V_5	0	1	1	0	1	0	
V_6	0	1	0	0	0	0	
V_7	0	0	1	0	0	0	
V_8	0	0	0	0	0	0	

$$(p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$$

	p	q	r	$p \wedge q$	$q \wedge r$	$p \wedge (q \wedge r)$	$(p \land q) \land r$
$\overline{V_1}$	1	1	1	1	1	1	1
V_2	1	1	0	1	0	0	0
V_3	1	0	1	0	0	0	0
V_4	1	0	0	0	0	0	0
V_5	0	1	1	0	1	0	0
V_6	0	1	0	0	0	0	0
V_7	0	0	1	0	0	0	0
V_8	0	0	0	0	0	0	0

$$(p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$$

Theorem

 φ and ψ are logically equivalent if and only if $\varphi \leftrightarrow \psi$ is a tautology.

Proof:

• Forward direction: Suppose $\varphi \Leftrightarrow \psi$. Let V be an arbitrary valuation function. By assumption, it holds that $V(\varphi) = V(\psi)$. Hence either $V(\varphi) = V(\psi) = 0$ or $V(\varphi) = V(\psi) = 1$. In either case, it follows from the semantics of the equivalence that $V(\varphi \leftrightarrow \psi) = 1$.

- Backward direction: Suppose $\varphi \leftrightarrow \psi$ is a tautology. Let V be an arbitrary valuation function. We have to distinguish two cases:
 - $V(\varphi)=1.$ It follows from the semantics of equivalence that $V(\psi)=1.$
 - $V(\varphi)=0.$ It follows from the semantics of equivalence that $V(\psi)=0.$

In both cases it holds that $V(\varphi)=V(\psi).$ Hence φ and ψ are logically equivalent.