Mathematics for linguists

Gerhard Jäger

University of Tübingen

October 26, 2010

Mathematics for linguists

Definition (Inference)

A formula φ follows logically from a set of formulas M — formally written as

 $M \Rightarrow \varphi$

if and only if it holds for all valuation functions V: If for all $\psi \in M$:

$$V(\psi) = 1$$

then

$$V(\varphi) = 1$$

Logical inference

- If $M \Rightarrow \varphi$, this is also called a **valid argument**.
- M is called the set of premises and φ the conclusions
- tautologies logically follow from the empty set

p

• examples for valid arguments

$$\begin{array}{cccc} p,q &\Rightarrow& p\\ p,q &\Rightarrow& p \wedge q\\ p \wedge q &\Rightarrow& q \wedge p\\ p,q &\Rightarrow& q \vee r\\ p &\Rightarrow& q \rightarrow p\\ p,p \rightarrow q &\Rightarrow& q\\ \rightarrow q,q \rightarrow r &\Rightarrow& p \rightarrow r \end{array}$$

- $\bullet\,$ for finite M, validity of an argument can be decided with the help of truth tables
- In each line where each premise has the truth value "1", the conclusion must have the truth value "1" as well.
- example: "'Modus Ponens"'

$$p,p \to q \Rightarrow q$$

Logical inference

	p	q	$p \to q$
V_1	1	1	1
V_2	1	0	0
V_3	0	1	1
V_4	0	0	1

Logical inference

Only in the first line all premises are true, and there the conclusion is also true.

The deduction theorem

Theorem

For arbitrary formulas $\varphi_1, \cdots, \varphi_n, \psi$,

$$M, \varphi_1, \cdots, \varphi_n \Rightarrow \psi$$

if and only if

$$M \Rightarrow \varphi_1 \to \dots \to \varphi_n \to \psi$$

Proof: We prove the theorem via complete induction over n.

• Induction base n = 0: The theorem obviously holds.

The deduction theorem

- Induction step, forward direction: Suppose the theorem holds for n. We have to show that in this case, it also holds for n + 1. Let V be an arbitrary valuation where for all $\xi \in M, V(\xi) = 1$ and for all i with $1 \le i \le n$, $V(\varphi_i) = 1$. Now there are two alternatives:
 - $V(\varphi_{n+1}) = 0$. It follows from the semantics of implication that in this case, $V(\varphi_{n+1} \to \psi) = 1$.
 - $\begin{array}{ll} \textcircled{O} & V(\varphi_{n+1})=1. \mbox{ Since } M, \varphi_1, \cdots, \varphi_{n+1} \Rightarrow \psi, \mbox{ and since all statements to the left of "$$$" are assigned the truth value 1 by V, it also holds that $V(\psi)=1$ and by the semantics of implication $V(\varphi_{n+1} \rightarrow \psi)=1$ \\ \end{array}$

Since V was arbitrary it follows that every valuation that verifies $M, \varphi_1, \cdots, \varphi_n$ also verifies $\varphi_{n+1} \to \psi$, which means that $M, \varphi_1, \cdots, \varphi_n \Rightarrow \varphi_{n+1} \to \psi$. So, by the induction assumption, it holds that $M \Rightarrow \varphi_1 \to \cdots \to \varphi_{n+1} \to \psi$.

The deduction theorem

• Induction step, backward direction: Suppose the theorem holds for n. Let us furthermore assume that $M \Rightarrow \varphi_1 \rightarrow \cdots \rightarrow \varphi_{n+1} \rightarrow \psi$. Finally we also assume that for all $\xi \in M : V(\xi) = 1$, and $V(\varphi_i) = 1$ for $1 \le i \le n+1$. According to the induction assumption, it holds that: $M, \varphi_1, \cdots, \varphi_n \Rightarrow \varphi_{n+1} \rightarrow \psi$. Hence $V(\varphi_{n+1} \rightarrow \psi) = 1$. Due to the semantics of the implication, we also have $V(\psi) = 1$.

- The deduction theorem is the basis for the method of the **conditional proof**.
- To prove that If A then B is logically true (or follows from a set of background premises), you assume
 - $\bullet \ A$ as and additional premise, and
 - prove B with the help of this premise.

- Proof via truth tables if often tedious and redundant
- alternative: indirect proof
- You start with the assumption that an argument is invalid, and you try to derive a contradiction.
- The argument is not valid if there is at least one valuation function V that makes all premises true and the conclusion false.

The truth tree method

• Example:

$$\Rightarrow p \to q \to r \lor p$$

- no premises; if conclusion is false, $\neg(p \rightarrow q \rightarrow r \lor p)$ must be true
- $\bullet\,$ hence p must be true and $q \to r \lor p$ false
- hence $\neg(q \rightarrow r \lor p)$ must be true
- hence q must be true and $r \lor p$ must be false
- hence $\neg(r \lor p)$ must be true
- hence both r and p must be false
- contradiction
- The assumption that the formula is not a tautology led to a contradiction
- formula is thus a tautology

The truth tree method

schematic representation in a tree

1.
$$\neg (p \rightarrow q \rightarrow r \lor p)$$
 (A)
2. p (1)
3. $\neg (q \rightarrow r \lor p)$ (1)
4. q (3)
5. $\neg (r \lor p)$ (3)
6. $\neg r$ (5)
7. $\neg p$ (5)
8. \times (1,7)

- here: degenerate tree that is non-branching
- in the general case, truth trees may be branching

The truth tree method

• each line consists of

- Iine number
- I formula that is assumed to be true
- number of the line from which the current line is derived (the first line is called "assumption" (A))
- If a branch
 - $\bullet\,$ contains the formula φ which is dominated by $\neg\varphi$, or
 - $\bullet\,$ contains the formula $\neg\varphi$ which is dominated by $\varphi,$

then this branch is marked as contradictory with an "x".

• A truth tree is **closed** if all branches are contradictory, i.e. all leaves are marked with "x".

Further example

- all branches are closed
- intuitive meaning: different cases are distinguished, but each case leads to a contradiction
- this disproves the assumption, hence it proves the original tautology

The calculus of truth trees

- procedure can partially be automatized
- every complex formula leads in a well-defined way to an extension of the truth tree

Rules

• double negation

 $\begin{array}{cc} (DN) & \neg \neg \varphi \\ & \varphi \end{array}$

conjunction

$$\begin{array}{cc} (C) & \varphi \wedge \psi \\ & \varphi \\ & \psi \end{array}$$

Rules

• disjunction

• implication

• equivalence

 \bullet negation + conjunction

Rules

\bullet negation + disjunction

$$(ND) \neg (\varphi \lor \psi) \\ \neg \varphi \\ \neg \psi$$

 \bullet negation + implication

$$\begin{array}{cc} (NI) & \neg(\varphi \to \psi) \\ & \varphi \\ & \neg\psi \end{array}$$

 \bullet negation + equivalence

Theorem

A formula φ of statement logic is logically true if and only if every branch of a truth tree, starting with $\neg \varphi$ as root, that only uses the rules given above, can be closed with an "x" because some formula occurs in it both in negated and in un-negated form.

- Try to use the non-branching rules first.
- When applying a branching rule, try to do it so that one of the two branches can be closed soon.
- The double negation of an atomic statement is usually good for nothing; therefore develop doubly negated atoms only if it is necessary to close a branch.