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Natural deduction

there is no simple algorithm to prove a given theorem/derivaiton

you can always start a sub-proof with any arbitrary new hypotheses

hence there are infinitely many proofs for each derivation

but: it is not possible to prove via natural deduction that a
formula is not derivable from a given set of premises

if you suspect that the conclusion doesn’t follow from the
premises, it is safer to work with truth trees
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Natural deduction

always keep track which sub-goal you are currentyl proving

if the current sub-goal is ϕ ∧ ψ:

first prove ϕ
then prove ψ
then apply ∧I

if the current sub-goal is ¬ϕ:

start a sub-proof with ϕ as additional assumption
for some convenient formula ψ: prove both ψ and ¬ψ
finish the sub-proof with I¬
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Natural deduction

if the current sub-goal is ϕ→ ψ:

start a new sub-proof with ϕ as additional assumption
try to prove ψ
if successful: finish the sub-proof with → I
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Natural deduction

if the current sub-goal is ϕ ∨ ψ:

prove ϕ or
prove ψ
if successful, introduce ϕ ∨ ψ via ∨I, 1(2)
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Natural deduction

otherwise: if there is an accessible formula ξ ∨ ζ
combine ∨E and ∨I:
start a sub-proof with the assumption ξ and prove ϕ (or ψ)
derive ϕ ∨ ψ using ∨I and finish sub-proof
start a second sub-proof and prove ψ (ϕ)
from this, derive ϕ ∨ ψ via ∨I and finish sub-proof
via ∨E, derive ϕ ∨ ψ
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Natural deduction

if the currect sub-goal is ϕ↔ ψ:

start sub-proof with the additional assumption ϕ
prove ψ
finish sub-proof and start new sub-proof withe the assumption ψ
prove ϕ
finish the second sub-proof and apply ↔ I
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Natural deduction

further rules of thumb:

apply ∧E, → E and ↔ E whenever possible
also, apply ¬I as soon as possible; if the current line in the proof is
the negation of an earlier accessible line, immediately end the
current sub-proof with ¬I.
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Natural deduction

if none of these rules of thumb is applicable: indirect proof:

suppose you want to prove ϕ

start your sub-proof with the assumption ¬ϕ
try to derive a contradiction
i.e.: try to derive both ψ and ¬ψ for some formula ψ
if successful: end the current sub-proof with ¬I
result is ¬¬ϕ
applying ¬E leads to ϕ, as desired
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Examples: de Morgan’s Laws (1)

1 ¬(p ∧ q) (A)

2 ¬(¬p ∨ ¬q) (A)

3 ¬p (A)

4 ¬p ∨ ¬q ∨ I 1;3

5 ¬¬p ¬ I; 3,4,2

6 ¬q (A)

7 ¬p ∨ ¬q ∨ I 2;6

8 ¬¬q ¬ I; 6,7,2

9 p ¬ E; 5

10 q ¬ E; 8

11 p ∧ q ∧ I;9,10

12 ¬¬(¬p ∨ ¬q) ¬ I; 2,11,1

13 ¬p ∨ ¬q ¬ E; 12

¬(p ∧ q) ` ¬p ∨ ¬q
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Examples: de Morgan’s Laws (2)

1 ¬p ∨ ¬q (A)

2 p ∧ q (A)

3 p ∧ I1;2

4 q ∧ I2;2

5 ¬p (A)

6 ¬p (6)

7 ¬q (A)

8 p (A)

9 p 8

10 ¬p ¬ I;8,4,7

11 ¬p ∨ E;1,5,6,7,9

12 ¬(p ∧ q) ¬ I;2,3,11

¬p ∨ ¬q ` ¬(p ∧ q)
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Examples: de Morgan’s Laws (3)

1 ¬(p ∨ q) (A)

2 p (A)

3 p ∨ q ∨ I1;2

4 ¬p ¬ I;2,1,3

5 q (A)

6 p ∨ q ∨ I2;5

7 ¬q ¬ I;5,1,6

8 ¬p ∧ ¬q ∧ I; 4,7

¬(p ∨ q) ` ¬p ∧ ¬q
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Examples: de Morgan’s Laws (4)

1 ¬p ∧ ¬q (A)

2 ¬p ∧ I1;1

3 ¬q ∧ I2;1

4 p ∨ q (A)

5 p (A)

6 p 5

7 q (A)

8 ¬p (A)

9 ¬p 8

10 ¬¬p ¬ I;8,3,7

11 p ¬ E; 10

12 p ∨ E;4,5,6,7,11

13 ¬(p ∨ q) ¬ I; 4,2,12

¬p ∧ ¬q ` ¬(p ∨ q)
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Summary: statement logic

covered here: classical statement logic

besides, there is a multitude of non-classical statement logics
(intuitionistic logic, relevant logic, modal logics, linear logic, ...)
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Summary: statement logic

meta-logical properties of classical statement logic:

two-valued semantics (every statement is either true or false)
there is a sound and complete syntactic description of logical
inference; there are several systems of syntactic rules (truth trees,
natural deduction, ...) that identify exactly the set of tautologies
logical inference is decidable: there are mechanical decision
procedures (for instance truth tables) that distinguish tautologies
from non-tautologies
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Summary: statement logic

beyond statement logic:

classical first order logic (covered in the remainder of this course)
has a sound and complete syntactic proof system, but is not
decidable
second order logic (and higher order logics) and type theory are
neither decidadble, nor do they have a complete syntactic proof
system (i.e. it is not possible to describe the set of tautologies by
means of finitely many syntactic rules)
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