Mathematics for linguists

Gerhard Jäger

University of Tübingen

November 2, 2010

Mathematics for linguists

- there is no simple algorithm to prove a given theorem/derivaiton
- you can always start a sub-proof with any arbitrary new hypotheses
- hence there are infinitely many proofs for each derivation
- **but:** it is not possible to prove via natural deduction that a formula is not derivable from a given set of premises
- if you suspect that the conclusion doesn't follow from the premises, it is safer to work with truth trees

- always keep track which sub-goal you are currentyl proving
- if the current sub-goal is $\varphi \wedge \psi$:
 - $\bullet~{\rm first}$ prove φ
 - $\bullet\,$ then prove ψ
 - then apply $\wedge I$
- if the current sub-goal is ¬φ:
 - $\bullet\,$ start a sub-proof with φ as additional assumption
 - \bullet for some convenient formula $\psi :$ prove both ψ and $\neg \psi$
 - finish the sub-proof with $I\neg$

- if the current sub-goal is $\varphi \to \psi$:
 - $\bullet\,$ start a new sub-proof with φ as additional assumption
 - $\bullet\,$ try to prove ψ
 - if successful: finish the sub-proof with ightarrow I

- if the current sub-goal is $\varphi \lor \psi$:
 - prove φ or
 - $\bullet \ \, {\rm prove} \ \, \psi$
 - if successful, introduce $\varphi \lor \psi$ via $\lor I, 1(2)$

- \bullet otherwise: if there is an accessible formula $\xi \lor \zeta$
 - combine $\lor E$ and $\lor I$:
 - start a sub-proof with the assumption ξ and prove φ (or ψ)
 - derive $\varphi \lor \psi$ using $\lor I$ and finish sub-proof
 - start a second sub-proof and prove ψ (φ)
 - from this, derive $\varphi \lor \psi$ via $\lor I$ and finish sub-proof
 - via $\lor E$, derive $\varphi \lor \psi$

- if the currect sub-goal is $\varphi \leftrightarrow \psi$:
 - start sub-proof with the additional assumption φ
 - $\bullet \ \, {\rm prove} \ \, \psi$
 - $\bullet\,$ finish sub-proof and start new sub-proof withe the assumption $\psi\,$
 - prove φ
 - $\bullet\,$ finish the second sub-proof and apply $\leftrightarrow\,I$

- further rules of thumb:
 - apply $\wedge E$, $\rightarrow E$ and $\leftrightarrow E$ whenever possible
 - also, apply ¬I as soon as possible; if the current line in the proof is the negation of an earlier accessible line, immediately end the current sub-proof with ¬I.

- if none of these rules of thumb is applicable: indirect proof:
- $\bullet\,$ suppose you want to prove φ
 - start your sub-proof with the assumption $\neg \varphi$
 - try to derive a contradiction
 - $\bullet\,$ i.e.: try to derive both ψ and $\neg\psi$ for some formula ψ
 - $\bullet\,$ if successful: end the current sub-proof with $\neg I$
 - result is $\neg \neg \varphi$
 - applying $\neg E$ leads to $\varphi\text{, as desired}$

Examples: de Morgan's Laws (1)

Gerhard Jäger (University of Tübingen)

 $\neg q$

Examples: de Morgan's Laws (2)

q)

Examples: de Morgan's Laws (3)

Examples: de Morgan's Laws (4)

Summary: statement logic

- covered here: classical statement logic
- besides, there is a multitude of non-classical statement logics (intuitionistic logic, relevant logic, modal logics, linear logic, ...)

- meta-logical properties of classical statement logic:
 - two-valued semantics (every statement is either true or false)
 - there is a sound and complete syntactic description of logical inference; there are several systems of syntactic rules (truth trees, natural deduction, ...) that identify exactly the set of tautologies
 - logical inference is **decidable**: there are mechanical decision procedures (for instance truth tables) that distinguish tautologies from non-tautologies

Summary: statement logic

- beyond statement logic:
 - classical first order logic (covered in the remainder of this course) has a sound and complete syntactic proof system, but is not decidable
 - second order logic (and higher order logics) and type theory are neither decidadble, nor do they have a complete syntactic proof system (i.e. it is not possible to describe the set of tautologies by means of finitely many syntactic rules)