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Examples

Side remark: if the truth value of a formula in a model does not depend on
the assignment function, the assignment function index can be omitted.
Instead of [ϕ]Mg we simply write [ϕ]M .

[∃xAnimal(x)]M

[∃x(Animal(x) ∧ Run(x))]M

[∃x(Animal(x) → Run(x))]M

[∀x(Animal(x) → Run(x))]M

[∃xScream(x)]M
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Examples

Side remark: if the truth value of a formula in a model does not depend on
the assignment function, the assignment function index can be omitted.
Instead of [ϕ]Mg we simply write [ϕ]M .

[∃xAnimal(x)]M = 1

[∃x(Animal(x) ∧ Run(x))]M = 1

[∃x(Animal(x) → Run(x))]M = 1

[∀x(Animal(x) → Run(x))]M = 0

[∃xScream(x)]M = 0
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Undecidability

for finite models the truth value can always be determined

in infinite models, it is not always possibel to determine the truth
value of a formula

example: prime twins
model: system of natural numbers
truth value of the following formula (with the intended
interpretation of the predicates) is unknown:

∀x∃y∃z(x < y ∧ Prime(y) ∧ Prime(z) ∧ Plus(y, 2, z))
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Inference

central notion for logic is inference

truth is actually an auxiliary notion

how can inference in predicate logic be determined?
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Logical inference

Definition (Logical inference)

From the premises ϕ1, . . . , ϕn the conclusion ψ follows logically – formally

written as

ϕ1 . . . , ϕn ⇒ ψ

if and only if for all models M and all assignment functions g it holds that:

if [ϕi]
M
g = 1 for all 1 ≤ i ≤ n, then also [ψ]Mg = 1.
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the definitions from statement logic for the other logical properties
and relations can directly be applied to predicate logic as well:
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Tautologies

Definition (Tautology)

A formula ϕ is a predicate logical tautology, formally written as

⇒ ϕ

if and only if for all models M and all assignment function g it holds:

[ϕ]Mg = 1
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Contradictions

Definition (Contradiction)

A formula ϕ is a predicate logical Contradiction if and only if for all

models M and all assignment functions g it holds:

[ϕ]Mg = 0
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Logical equivalence

Definition (Logical equivalence)

Two formulas ϕ and ψ are logically equivalent — formally written as

ϕ⇔ ψ

if and onl if for all model M and all assignment functions g it holds that:

[ϕ]Mg = [ψ]Mg
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the meta-logical theorems of statement logic (cf. slides from
December 15) hold for predicate logic as well

How do we show that for instance a formula is a tautology?

Example:
?
⇒ ∀x¬P (x) → ¬∃yP (y)

two semantic Methods:

reformulate as a set-theoretical statement
try to construct a falsifying model
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Constructing a counter model

indirect method: construct a falsifying model

basic idea: indirect proof

suppose the formula is not a tautology
this means that there is a model and an assignment function that
make the formula false
we try to construct such a model (and an appropriate assignment
function)
if this attempt fails, the formula must be a tautology
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Constructing a counter model

Suppose: there are M and g such that
[∀x¬P (x) → ¬∃yP (y)]Mg = 0

Hence: [∀x¬P (x)]Mg = 1 and ¬∃yP (y)]Mg = 0

Hence: [∀x¬P (x)]Mg = 1 and [∃yP (y)]Mg = 1

Hence: mina∈E([¬P (x)]
M
g[a/x]) = 1 and maxb∈E([P (y)]

M
g[b/y]) = 1

Hence: mina∈E(1− [P (x)]Mg[a/x]) = 1 and

maxb∈E([P (y)]
M
g[b/y]) = 1

Hence: maxa∈E([P (x)]
M
g[a/x]) = 0 and maxb∈E([P (y)]

M
g[b/y]) = 1:

Contradiction
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Constructing a counter model

Example for a non-tautology:

∀x∃yRxy

Assumption: there is a (counter) model M and an assignment g
such that:

[∀x∃yRxy]Mg = 0

hence: mina∈E [∃yRxy]
M
g[a/x]] = 0

hence: for some a ∈ E: [∃yRxy]Mg[a/x]] = 0

hence: maxb∈E [Rxy]
M
g[a/x][b/y] = 0

hence: for all b ∈ E: [Rxy]Mg[a/x][b/y] = 0

hence: for all b ∈ E: 〈a, b〉 6∈ F (R)
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Constructing a counter model

simplest model with these properties:

M = 〈E,F 〉
E = {a}
F (R) = ∅

counter model method can be automatized to a certain degree:

truth tree method for predicate logic
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Truth tree calculus for predicate logic

all rules of the truth tree calculus for statement logic remain valid

there are four new rules, two per quantifier
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Rules

universal quantifier
(∀) ∀xϕ

[c/x]ϕ

where c is an arbitrary constant that does occur within the same
branch. If no constant occurs in this branch so far, c can be freely
chosen.

existential quanifier
(∃) ∃xϕ

[c/x]ϕ

where c is an arbitrary constant that does not occur within the
same branch.
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Rules

negation + universal quantifier

(Neg + ∀) ¬∀xϕ
[c/x]¬ϕ

where c is an arbitrary constant that does not occur within the
same branch.

negation + existential quantifier

(Neg + ∃) ¬∃xϕ
[c/x]¬ϕ

where c is an arbitrary constant that does occur within the same
branch. If no constant occurs in this branch so far, c can be freely
chosen.
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Rules

The rules (∃) and (¬∀) may only be applied once per formula.

The rules (∀) and (¬∃) can be applied with every constant that
occurs in this branch.

Rule of thumb: if you have the choice, first apply (∃) and (¬∀),
and apply (∀) and (¬∃) later
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Examples

1. ¬(∀x¬Px→ ¬∃xPx) (A)
2. ∀x¬Px (1)
3. ¬¬∃xPx (1)
4. ∃xPx (3)
5. Pa (4)
6. ¬Pa (2)
7. x (5, 6)

The assumption that ∀x¬Px→ ¬∃xPx is false in a model, i.e. that the
negation ¬(∀x¬Px→ ¬∃xPx) is true leads to a contradiction. Hence the
original formula is a tautology.
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Examples

1. ¬∀x∃yRxy (A)
2. ¬∃yRay (1)
3. Raa (2)

The branch remains open, even though no further rules can be applied.
The formula ∀x∃yRxy is thus not a tautology.
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Inference and truth trees

logical inferences can be proved using the truth tree calculus as
well

similary as in statement logic, for indirect proof we assume that

all premises are true, and
the conclusion is false

hence a truth tree for an inference starts with the premises and the
negation of the conclusion
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Examples

∀xP (x) ⇒ ∀yP (y)

1. ∀xP (x) (A)
2. ¬∀yP (y) (A)
3. ¬P (a) (2)
4. P (a) (1)
5. x (3, 4)
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Examples

∀x(P (x) → Q(x)) ⇒ ∀xP (x) → ∀xQ(x)

1. ∀x(P (x) → Q(x)) (A)
2. ¬(∀xP (x) → ∀xQ(x)) (A)
3. ∀xP (x) (2)
4. ¬∀xQ(x) (2)
5. ¬Q(a) (4)
6. P (a) (3)
7. P (a) → Q(a) (1)

8. ¬P (a) (7)
x (6, 8)

9. Q(a) (7)
x (5, 9)
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Examples

∃xP (x) 6⇒ P (a)

1. ∃xP (x) (A)
2. ¬P (a) (A)
3. P (a) (1)

x (2, 3)

WRONG!!
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Examples

∃xP (x) 6⇒ P (a)

1. ∃xP (x) (A)
2. ¬P (a) (A)
3. P (b) (1)

CORRECT
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Examples

∃x∀yR(x, y) ⇒ ∀y∃xR(x, y)

1. ∃x∀yR(x, y) (A)
2. ¬∀y∃xR(x, y) (A)
3. ∀yR(a, y) (1)
4. ¬∃xR(x, b) (2)
5. R(a, b) (3)
6. ¬R(a, b) (4)

x (5, 6)
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Undecidability

?
⇒ ∃x∀yR(x, y)

1. ¬∃x∀yR(x, y) (A)
2. ¬∀yR(a, y) (1)
3. ¬R(a, b) (2)
4. ¬∀yR(b, y) (1)
5. ¬R(b, c) (2)
6. ¬∀yR(c, y) (1)
7. ¬R(c, d) (2)

...
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Undecidability

branch can be extended arbitrarily often without ever encountering
a contradiction

it generally holds:

only logical inferences can be proved with this method (i.e. the
calculus is sound)
for each logical inference there is a proof within the truth tree
calculus (the calculus is complete)
there is no guarantee that a non-inference is recognized as such
procedure may enter infinite loops
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Undecidability

there are no other mechanical procedures either that always
correctly distinguish inference from non-inferences within finite
time

inference in predicate logic is undecidable
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