Mathematics for linguists

Gerhard Jäger

University of Tübingen

November 16, 2010

Mathematics for linguists

Side remark: if the truth value of a formula in a model does not depend on the assignment function, the assignment function index can be omitted. Instead of $[\varphi]_g^M$ we simply write $[\varphi]^M$.

- $[\exists x Animal(x)]^M$
- $[\exists x (Animal(x) \land Run(x))]^M$
- $[\exists x (Animal(x) \rightarrow Run(x))]^M$
- $[\forall x (Animal(x) \rightarrow Run(x))]^M$
- $[\exists x Scream(x)]^M$

Side remark: if the truth value of a formula in a model does not depend on the assignment function, the assignment function index can be omitted. Instead of $[\varphi]_g^M$ we simply write $[\varphi]^M$.

•
$$[\exists x Animal(x)]^M = 1$$

•
$$[\exists x (Animal(x) \land Run(x))]^M = 1$$

•
$$[\exists x (Animal(x) \rightarrow Run(x))]^M = 1$$

•
$$[\forall x (Animal(x) \rightarrow Run(x))]^M = 0$$

•
$$[\exists x \mathit{Scream}(x)]^M = 0$$

- for finite models the truth value can always be determined
- in infinite models, it is not always possibel to determine the truth value of a formula
 - example: prime twins
 - model: system of natural numbers
 - truth value of the following formula (with the intended interpretation of the predicates) is unknown:

 $\forall x \exists y \exists z (x < y \land \mathsf{Prime}(y) \land \mathsf{Prime}(z) \land \mathsf{Plus}(y, 2, z))$

Inference

- central notion for logic is inference
- truth is actually an auxiliary notion
- how can inference in predicate logic be determined?

Definition (Logical inference)

From the premises $\varphi_1, \ldots, \varphi_n$ the conclusion ψ follows logically – formally written as

$$\varphi_1 \ldots, \varphi_n \Rightarrow \psi$$

if and only if for all models M and all assignment functions g it holds that: if $[\varphi_i]_g^M = 1$ for all $1 \le i \le n$, then also $[\psi]_g^M = 1$. • the definitions from statement logic for the other logical properties and relations can directly be applied to predicate logic as well:

Definition (Tautology)

A formula φ is a predicate logical **tautology**, formally written as

 $\Rightarrow \varphi$

if and only if for all models M and all assignment function g it holds:

$$[\varphi]_g^M = 1$$

Definition (Contradiction)

A formula φ is a predicate logical **Contradiction** if and only if for all models M and all assignment functions g it holds:

$$[\varphi]_g^M = 0$$

Definition (Logical equivalence)

Two formulas φ and ψ are logically equivalent — formally written as

 $\varphi \Leftrightarrow \psi$

if and onl if for all model M and all assignment functions g it holds that:

$$[\varphi]_g^M = [\psi]_g^M$$

- the meta-logical theorems of statement logic (cf. slides from December 15) hold for predicate logic as well
- How do we show that for instance a formula is a tautology?
- Example:

$$\stackrel{?}{\Rightarrow} \forall x \neg P(x) \rightarrow \neg \exists y P(y)$$

- two semantic Methods:
 - reformulate as a set-theoretical statement
 - try to construct a falsifying model

- indirect method: construct a falsifying model
- basic idea: indirect proof
 - suppose the formula is not a tautology
 - this means that there is a model and an assignment function that make the formula false
 - we try to construct such a model (and an appropriate assignment function)
 - if this attempt fails, the formula must be a tautology

• Suppose: there are
$$M$$
 and g such that
 $[\forall x \neg P(x) \rightarrow \neg \exists y P(y)]_g^M = 0$
• Hence: $[\forall x \neg P(x)]_g^M = 1$ and $\neg \exists y P(y)]_g^M = 0$
• Hence: $[\forall x \neg P(x)]_g^M = 1$ and $[\exists y P(y)]_g^M = 1$
• Hence: $\min_{a \in E} ([\neg P(x)]_{g[a/x]}^M) = 1$ and $\max_{b \in E} ([P(y)]_{g[b/y]}^M) = 1$
• Hence: $\min_{a \in E} (1 - [P(x)]_{g[a/x]}^M) = 1$ and $\max_{b \in E} ([P(y)]_{g[b/y]}^M) = 1$
• Hence: $\max_{a \in E} ([P(x)]_{g[a/x]}^M) = 0$ and $\max_{b \in E} ([P(y)]_{g[b/y]}^M) = 1$:
Contradiction

• Example for a non-tautology:

$$\forall x \exists y R x y$$

- Assumption: there is a (counter) model M and an assignment g such that:
 - $[\forall x \exists y Rxy]_g^M = 0$
 - hence: $\min_{a \in E} [\exists y Rxy]_{g[a/x]}^M] = 0$
 - hence: for some $a \in E$: $[\exists y Rxy]_{q[a/x]}^M = 0$
 - hence: $\max_{b \in E} [Rxy]_{g[a/x][b/y]}^{M} = 0$
 - hence: for all $b \in E$: $[Rxy]_{g[a/x][b/y]}^{M} = 0$
 - hence: for all $b \in E$: $\langle a, b \rangle \notin F(R)$

- simplest model with these properties:
 - $M = \langle E, F \rangle$
 - $E = \{a\}$
 - $F(R) = \emptyset$
- counter model method can be automatized to a certain degree:
- truth tree method for predicate logic

Truth tree calculus for predicate logic

all rules of the truth tree calculus for statement logic remain validthere are four new rules, two per quantifier

• universal quantifier

$$\forall) \quad \forall x \varphi \\ [c/x] \varphi$$

where c is an arbitrary constant that **does occur** within the same branch. If no constant occurs in this branch so far, c can be freely chosen.

existential quanifier

$$\begin{array}{ll} (\exists) & \exists x\varphi \\ & [c/x]\varphi \end{array}$$

where c is an arbitrary constant that **does not occur** within the same branch.

• negation + universal quantifier

$$\begin{array}{ll} (Neg + \forall) & \neg \forall x\varphi \\ & [c/x] \neg \varphi \end{array}$$

where c is an arbitrary constant that **does not occur** within the same branch.

• negation + existential quantifier

$$\begin{array}{ll} (Neg+\exists) & \neg \exists x \varphi \\ & [c/x] \neg \varphi \end{array}$$

where c is an arbitrary constant that **does occur** within the same branch. If no constant occurs in this branch so far, c can be freely chosen.

- The rules (\exists) and $(\neg\forall)$ may only be applied once per formula.
- The rules (\forall) and $(\neg\exists)$ can be applied with every constant that occurs in this branch.
- Rule of thumb: if you have the choice, first apply (\exists) and $(\neg\forall)$, and apply (\forall) and $(\neg\exists)$ later

1.
$$\neg(\forall x \neg Px \rightarrow \neg \exists xPx)$$
 (A)
2. $\forall x \neg Px$ (1)
3. $\neg \neg \exists xPx$ (1)
4. $\exists xPx$ (3)
5. Pa (4)
6. $\neg Pa$ (2)
7. \times (5,6)

The assumption that $\forall x \neg Px \rightarrow \neg \exists xPx$ is false in a model, i.e. that the negation $\neg(\forall x \neg Px \rightarrow \neg \exists xPx)$ is true leads to a contradiction. Hence the original formula is a tautology.

1.
$$\neg \forall x \exists y Rxy$$
 (A)
2. $\neg \exists y Ray$ (1)
3. Raa (2)

The branch remains open, even though no further rules can be applied. The formula $\forall x \exists y Rxy$ is thus not a tautology.

Inference and truth trees

- logical inferences can be proved using the truth tree calculus as well
- similary as in statement logic, for indirect proof we assume that
 - all premises are true, and
 - the conclusion is false
- hence a truth tree for an inference starts with the premises and the negation of the conclusion

$$\begin{array}{ll} \forall x P(x) \Rightarrow \forall y P(y) \\ 1. \quad \forall x P(x) & (A) \\ 2. \quad \neg \forall y P(y) & (A) \\ 3. \quad \neg P(a) & (2) \\ 4. \quad P(a) & (1) \\ 5. \quad \times & (3,4) \end{array}$$

$$\forall x (P(x) \rightarrow Q(x)) \Rightarrow \forall x P(x) \rightarrow \forall x Q(x)$$

$$1. \quad \forall x (P(x) \rightarrow Q(x)) \quad (A)$$

$$2. \quad \neg (\forall x P(x) \rightarrow \forall x Q(x)) \quad (A)$$

$$3. \quad \forall x P(x) \quad (2)$$

$$4. \quad \neg \forall x Q(x) \quad (2)$$

$$5. \quad \neg Q(a) \quad (4)$$

$$6. \quad P(a) \quad (3)$$

$$7. \quad P(a) \rightarrow Q(a) \quad (1)$$

$$8. \quad \neg P(a) \quad (7) \quad 9. \quad Q(a) \quad (7)$$

$$\times \quad (6, 8) \qquad \times \quad (5, 9)$$

$\exists x P(x) \not\Rightarrow P(a)$		
1.	$\exists x P(x)$	(A)
2.	$\neg P(a)$	(A)
3.	$P(\boldsymbol{a})$	(1)
	х	(2, 3)
WRONG!!		

 $\exists x P(x) \not\Rightarrow P(a)$ 1. $\exists x P(x) \quad (A)$ 2. $\neg P(a) \quad (A)$ 3. $P(b) \quad (1)$ CORRECT

Gerhard Jäger (University of Tübingen)

$$\exists x \forall y R(x, y) \Rightarrow \forall y \exists x R(x, y)$$

$$1. \quad \exists x \forall y R(x, y) \quad (A)$$

$$2. \quad \neg \forall y \exists x R(x, y) \quad (A)$$

$$3. \quad \forall y R(a, y) \quad (1)$$

$$4. \quad \neg \exists x R(x, b) \quad (2)$$

$$5. \quad R(a, b) \quad (3)$$

$$6. \quad \neg R(a, b) \quad (4)$$

$$\times \quad (5, 6)$$

$$\stackrel{?}{\Rightarrow} \exists x \forall y R(x, y)$$
1. $\neg \exists x \forall y R(x, y) \quad (A)$
2. $\neg \forall y R(a, y) \quad (1)$
3. $\neg R(a, b) \quad (2)$
4. $\neg \forall y R(b, y) \quad (1)$
5. $\neg R(b, c) \quad (2)$
6. $\neg \forall y R(c, y) \quad (1)$
7. $\neg R(c, d) \quad (2)$

÷

- branch can be extended arbitrarily often without ever encountering a contradiction
- it generally holds:
 - only logical inferences can be proved with this method (i.e. the calculus is **sound**)
 - for each logical inference there is a proof within the truth tree calculus (the calculus is **complete**)
 - there is no guarantee that a non-inference is recognized as such
 - procedure may enter infinite loops

- there are no other mechanical procedures either that always correctly distinguish inference from non-inferences within finite time
- inference in predicate logic is **undecidable**