Mathematics for linguists

Gerhard Jäger

University of Tübingen

October 26, 2010

Mathematics for linguists

We have p, q, r, \dots as atomic statements.

We have p, q, r, ... as atomic statements. The syntax of statement logic is defined *inductively*:

We have p, q, r, ... as atomic statements.

The syntax of statement logic is defined *inductively*:

- Every atomic statement p is a statement.

We have p, q, r, ... as atomic statements.

The syntax of statement logic is defined *inductively*:

- Every atomic statement p is a statement.
- If φ is a statement, $\neg\varphi$ also is a statement.

We have p, q, r, ... as atomic statements.

The syntax of statement logic is defined *inductively*:

- Every atomic statement p is a statement.
- If φ is a statement, $\neg \varphi$ also is a statement.
- If φ and ψ are statements, $(\varphi \wedge \psi)$ also is a statement.

We have p, q, r, ... as atomic statements.

The syntax of statement logic is defined *inductively*:

- Every atomic statement p is a statement.
- If φ is a statement, $\neg \varphi$ also is a statement.

- If φ and ψ are statements, $(\varphi \wedge \psi)$ also is a statement. Nothing else is a statement.

We have p, q, r, \dots as atomic statements.

The syntax of statement logic is defined *inductively*:

- Every atomic statement p is a statement.
- If φ is a statement, $\neg \varphi$ also is a statement.
- If φ and ψ are statements, $(\varphi \wedge \psi)$ also is a statement.

Nothing else is a statement.

Note that we assume that statements are finite.

- 0 is a natural number.

- 0 is a natural number.
- If n is a natural number, succ(n)[=n+1] also is a natural number.

- 0 is a natural number.
- If n is a natural number, succ(n)[=n+1] also is a natural number.

Nothing else is a natural number.

- 0 is a natural number.
- If n is a natural number, succ(n)[=n+1] also is a natural number.

Nothing else is a natural number. Again: Finiteness.

- 0 is a natural number.
- If n is a natural number, succ(n)[=n+1] also is a natural number.

Nothing else is a natural number.

Again: Finiteness.

Generally, proving by induction that "All X have the property P" is possible just in case the set of all X is defined inductively.

Note that an inductive definition always consists of

- One or more basic cases.

Note that an inductive definition always consists of

- One or more basic cases.
- One or more rules on how to construct new objects from objects that have already been constructed.

Proof by Induction on the Structure of Statements

We want to show that a property P holds for all statements.

Proof by Induction on the Structure of Statements

We want to show that a property P holds for all statements. Idea: We

- Show that P holds for the most basic (atomic) statements.

Proof by Induction on the Structure of Statements

We want to show that a property P holds for all statements. Idea: We

- Show that P holds for the most basic (atomic) statements.
- Show that every possibility of building complex statements from statements that have already been constructed 'transfers' P from the constituent statement to the complex one.

Theorem: In every statement φ of statement logic, the number of occurences of binary connectives equals the number of occurences of atomic statements -1.

Theorem: In every statement φ of statement logic, the number of occurences of binary connectives equals the number of occurences of atomic statements -1.

Proof:

Base: Let $\varphi \equiv p$;

Theorem: In every statement φ of statement logic, the number of occurences of binary connectives equals the number of occurences of atomic statements -1.

Proof:

Theorem: In every statement φ of statement logic, the number of occurences of binary connectives equals the number of occurences of atomic statements -1.

Proof:

- Base: Let $\varphi \equiv p$; the property holds.
- Step: Suppose the property holds for ψ and let $\varphi \equiv \neg \psi$. Then it also holds for φ , since prefixing " \neg " to ψ neither changes the number of occurences of atomic statements nor of binary connectives.

Theorem: In every statement φ of statement logic, the number of occurences of binary connectives equals the number of occurences of atomic statements -1.

Proof:

- Step: Suppose the property holds for ψ and let $\varphi \equiv \neg \psi$. Then it also holds for φ , since prefixing " \neg " to ψ neither changes the number of occurences of atomic statements nor of binary connectives.
 - Suppose the property holds for ψ and θ and let $\varphi \equiv (\psi \land \theta)$

Theorem: In every statement φ of statement logic, the number of occurences of binary connectives equals the number of occurences of atomic statements -1.

Proof:

- Step: Suppose the property holds for ψ and let $\varphi \equiv \neg \psi$. Then it also holds for φ , since prefixing " \neg " to ψ neither changes the number of occurences of atomic statements nor of binary connectives.
 - Suppose the property holds for ψ and θ and let $\varphi \equiv (\psi \land \theta)$ Let the number of atomic statements in ψ be m, that of atomic statements in θ be n.

Theorem: In every statement φ of statement logic, the number of occurences of binary connectives equals the number of occurences of atomic statements -1.

Proof:

- Step: Suppose the property holds for ψ and let $\varphi \equiv \neg \psi$. Then it also holds for φ , since prefixing " \neg " to ψ neither changes the number of occurences of atomic statements nor of binary connectives.
 - Suppose the property holds for ψ and θ and let $\varphi \equiv (\psi \land \theta)$ Let the number of atomic statements in ψ be m, that of atomic statements in θ be n. Then in φ there are m + n occurrences of atomic statements.

Theorem: In every statement φ of statement logic, the number of occurences of binary connectives equals the number of occurences of atomic statements -1.

Proof:

- Step: Suppose the property holds for ψ and let $\varphi \equiv \neg \psi$. Then it also holds for φ , since prefixing " \neg " to ψ neither changes the number of occurences of atomic statements nor of binary connectives.
 - Suppose the property holds for ψ and θ and let $\varphi \equiv (\psi \land \theta)$ Let the number of atomic statements in ψ be m, that of atomic statements in θ be n. Then in φ there are m + n occurrences of atomic statements. By the induction assumption, m 1 binary connectives occur in ψ and n 1 occur in θ .

Theorem: In every statement φ of statement logic, the number of occurences of binary connectives equals the number of occurences of atomic statements -1.

Proof:

- Step: Suppose the property holds for ψ and let $\varphi \equiv \neg \psi$. Then it also holds for φ , since prefixing " \neg " to ψ neither changes the number of occurences of atomic statements nor of binary connectives.
 - Suppose the property holds for ψ and θ and let $\varphi \equiv (\psi \land \theta)$ Let the number of atomic statements in ψ be m, that of atomic statements in θ be n. Then in φ there are m + n occurrences of atomic statements. By the induction assumption, m 1 binary connectives occur in ψ and n 1 occur in θ . Since one " \land " is added in φ that neither occurs in ψ nor in θ , the total number of occurrences of binary connectives in φ is (m 1) + (n 1) + 1 = m + n 1.

Theorem: In every statement φ of statement logic, the number of occurences of binary connectives equals the number of occurences of atomic statements -1.

Proof:

- Step: Suppose the property holds for ψ and let $\varphi \equiv \neg \psi$. Then it also holds for φ , since prefixing " \neg " to ψ neither changes the number of occurences of atomic statements nor of binary connectives.
 - Suppose the property holds for ψ and θ and let $\varphi \equiv (\psi \land \theta)$ Let the number of atomic statements in ψ be m, that of atomic statements in θ be n. Then in φ there are m + n occurrences of atomic statements. By the induction assumption, m 1 binary connectives occur in ψ and n 1 occur in θ . Since one " \land " is added in φ that neither occurs in ψ nor in θ , the total number of occurrences of binary connectives in φ is (m 1) + (n 1) + 1 = m + n 1. So the property holds for φ .

Theorem: In every statement φ of statement logic, the number of occurences of binary connectives equals the number of occurences of atomic statements -1.

Proof:

Base: Let $\varphi \equiv p$; the property holds.

- Step: Suppose the property holds for ψ and let $\varphi \equiv \neg \psi$. Then it also holds for φ , since prefixing " \neg " to ψ neither changes the number of occurences of atomic statements nor of binary connectives.
 - Suppose the property holds for ψ and θ and let $\varphi \equiv (\psi \land \theta)$ Let the number of atomic statements in ψ be m, that of atomic statements in θ be n. Then in φ there are m + n occurrences of atomic statements. By the induction assumption, m 1 binary connectives occur in ψ and n 1 occur in θ . Since one " \land " is added in φ that neither occurs in ψ nor in θ , the total number of occurrences of binary connectives in φ is (m 1) + (n 1) + 1 = m + n 1. So the property holds for φ .

Since we have considered all cases, we have established the theorem.