Mathematics for linguists

Gerhard Jäger

gerhard.jaeger@uni-tuebingen.de

Uni Tübingen, WS 2009/2010

November 3, 2009

Composition of relations and functions

- let $R \subseteq A \times B$ and $S \subseteq B \times C$ be relations
- new relation $S \circ R \subseteq A \times C$ is formed as

 $S \circ R := \{ \langle x,y \rangle | \text{there is a } z \text{ such that } R(x,z) \text{ and } S(z,y) \}$

• If R and S are functions, $S \circ R$ is also a function.

The identity function

• function $F: A \rightarrow A$ is called **identity function** iff

$$F = \{ \langle x, x \rangle \in A \times A | x \in A \}$$

- notation: $F = id_A$
- composition of a relation R with an identity function with the appropriate domain yields R again:
 - If $R \subseteq A \times B$, then
 - $id_B \circ R = R$
 - $R \circ id_A = R$
- If $F: A \rightarrow B$ is an injective function, then:
 - $F \circ F^{-1} \subseteq id_B$
 - $F^{-1} \circ F = id_A$
- Generally, it holds that:
 - $id_{\pi_0[R]} \subseteq R^{-1} \circ R$
 - $id_{\pi_1[R]} \subseteq R \circ R^{-1}$

Properties of relations

Many relations that are used in linguistic applications have certain structural properties. The most important ones are briefly discussed here; the apply to relations on a given set, i.e. $R \subseteq A \times A$.

Reflexivity

 $R \subseteq A \times A$ is **reflexive** iff for all $x \in A$ it holds that R(x, x).

Reflexivity

Example

- $A = \{1, 2, 3\}$
- $R_1 = \{ \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 3, 1 \rangle \}$
- $R_2 = \{\langle 1,1\rangle, \langle 2,2\rangle\}$

 R_1 is reflexive but R_2 is not (because $\langle 3, 3 \rangle \notin R_2$).

 $R \subseteq A \times A$ is reflexive iff $id_A \subseteq R$.

More examples

- "has the same final digit as"
- "has birthday on the same day as"
- "greater or equal"

Irreflexivity

- Relations that are not reflexive are called **non-reflexive**
- Relations that **never** connect an object to itself are called **irreflexive**.

Irreflexivity

R is irreflexive iff there is no object \boldsymbol{x} such that $R(\boldsymbol{x},\boldsymbol{x}).$

In other words: R is irreflexive iff $R \cap id_A = \emptyset$.

Examples

• $R_3 = \{\langle 1, 2 \rangle, \langle 3, 2 \rangle\}$

•
$$R_4 = \{ \langle a, b \rangle \in \mathbb{N} \times \mathbb{N} | a < b \}$$

Symmetry

Symmetry

A relation R is symmetric iff for all x,y with R(x,y) it holds that R(y,x).

In other words: R is symmetric iff $R = R^{-1}$.

Examples

- "married to"
- "relatively prime"
- "happened in the same year as"
- "cousin of"
- $\{\langle 1,2\rangle,\langle 2,1\rangle,\langle 3,2\rangle,\langle 2,3\rangle\}$
- $\{\langle 1,3\rangle,\langle 3,1\rangle\}$
- $\{\langle 2,2\rangle\}$

Asymmetry

Asymmetry

A relation R is asymmetric iff it never holds that both $R(\boldsymbol{x},\boldsymbol{y})$ and $R(\boldsymbol{y},\boldsymbol{x}).$

- Every asymmetric relation must be irreflexive.
- examples:
 - $\{\langle 2,3\rangle,\langle 1,2\rangle\}$
 - $\{\langle 1,3\rangle,\langle 2,3\rangle,\langle 1,2\rangle\}$
 - $\{\langle 1,2\rangle\}$

Anti-symmetry

Anti-symmetry

A relation R is **anti-symmetric** iff whenever both R(x, y) and R(y, x), then x = y.

- R need not be reflexive to be anti-symmetric!
- Every asymmetric relation is also anti-symmetric.
- If R is anti-symmetric, then $R id_A$ is asymmetric.

Anti-symmetry

Examples for anti-symmetric relations

- "greater or equal"
- "divisible by"
- "is a subset of"
- $\{\langle 2,3\rangle,\langle 1,1\rangle\}$
- $\{\langle 1,1\rangle,\langle 2,2\rangle\}$
- $\{\langle 1,2\rangle,\langle 2,3\rangle\}$

Transitivity

Transitivity

A relation R is transitive iff whenever R(x,y) and R(y,z), then R(x,z).

- examples:
 - "older than"
 - "richer than"
 - "greater than"
 - "ancestor of"
 - equality
 - $\{\langle 2,2\rangle\}$
 - $\{\langle 1,2\rangle,\langle 2,3\rangle,\langle 1,3\rangle\}$
 - $\{\langle 1,2\rangle,\langle 2,1\rangle,\langle 1,1\rangle,\langle 2,2\rangle\}$
 - $\{\langle 1,2\rangle,\langle 2,3\rangle,\langle 1,3\rangle,\langle 3,2\rangle,\langle 2,1\rangle,\langle 3,1\rangle,\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}$
- R is transitive iff $R \circ R \subseteq R$.

Connectedness

Connectedness

A relation $R \subseteq A \times A$ is **connected** iff for all $x, y \in A$ with $x \neq y$: R(x, y) or R(y, x) (or both).

Examples

- "greater than" (as applied to the natural numbers)
- $\{\langle 1,2\rangle,\langle 3,1\rangle,\langle 3,2\rangle\}$
- $\{\langle 1,1\rangle,\langle 2,3\rangle,\langle 1,2\rangle,\langle 3,1\rangle,\langle 2,2\rangle\}$

Properties of the inverse and the complement

$R \ (\neq \emptyset)$	R^{-1}	\overline{R}
reflexive	reflexive	irreflexive
irreflexive	irreflexive	reflexive
symmetric	symmetric	symmetric
asymmetric	asymmetric	not symmetric
anti-symmetric	anti-symmetric	depends on ${\it R}$
transitive	transitive	depends on R
connected	connected	depends on ${\cal R}$

Equivalence relations

A relation R is an **equivalence relation** iff R is reflexive, transitive and symmetric.

- examples:
 - equality
 - "has the same hair color as"
 - "is of the same age as"
 - "has the same remainder if divided by"
- notation:

$$[\![a]\!]_R := \{x | R(a, x)\}$$

• $\llbracket a \rrbracket_R$ is the set of all objects which are reachable from a via R.

Partition

Let A be a set. The set $P \subseteq \wp(A)$ is a **partition of** A iff

- $\bigcup P = A$, and
- for all $X, Y \in P$ with $X \neq Y \colon X \cap Y = \emptyset$.
- Examples: Let $A = \{a, b, c, d, e\}$
- The following sets are partitions of A:

•
$$P_1 = \{\{a, c, d\}, \{b, e\}\}$$

- $P_2 = \{\{a\}, \{b\}, \{c\}, \{d\}, \{e\}\}$
- $P_3 = \{\{a, b, c, d, e\}\}$
- The following sets are not partitions of A:

•
$$C = \{\{a, b, c\}, \{b, d\}, \{e\}\}$$

• $D = \{\{a\}, \{b, e\}, \{c\}\}$

There is a tight connection between equivalence relations and partitions.

• Let $R \subseteq A \times A$ be an equivalence relation. Then the following set is a partition of $\pi_0[R]$:

 $P_R = \{x \in \wp(A) | \text{there is a } y \in A \text{ such that } x = \llbracket y \rrbracket_R \}$

• Let P be a partition of A. Then the following is an equivalence relation:

 $R_P = \{ \langle x, y \rangle \in A \times A | \text{there is an } X \in P \text{ with } x \in X \text{ and } y \in X \}$

(Instead of " $R_P(a, b)$ " we sometimes write " $a \equiv_P b$ ".)

• example:

•
$$A = \{1, 2, 3, 4, 5\}$$

$$\begin{array}{lll} R & = & \{ \langle 1,1 \rangle, \langle 1,3 \rangle, \langle 3,1 \rangle, \langle 3,3 \rangle, \langle 2,2 \rangle, \langle 2,4 \rangle, \\ & & \langle 4,2 \rangle, \langle 4,5 \rangle, \langle 4,4 \rangle, \langle 5,2 \rangle, \langle 5,4 \rangle, \langle 5,5 \rangle, \langle 2,5 \rangle \} \end{array}$$

• The corresponding partition is:

$$P_R = \{\{1,3\},\{2,4,5\}\}$$

• Exercise: Let

$$R = \{ \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 3, 5 \rangle \\ \langle 5, 3 \rangle, \langle 5, 5 \rangle, \langle 4, 4 \rangle \}$$

What is the corresponding partition P_R ?