Mathematics for linguists

Gerhard Jäger
gerhard.jaeger@uni-tuebingen.de
Uni Tübingen, WS 2009/2010

November 3, 2009

Composition of relations and functions

- let $R \subseteq A \times B$ and $S \subseteq B \times C$ be relations
- new relation $S \circ R \subseteq A \times C$ is formed as

$$
S \circ R:=\{\langle x, y\rangle \mid \text { there is a } z \text { such that } R(x, z) \text { and } S(z, y)\}
$$

- If R and S are functions, $S \circ R$ is also a function.

The identity function

- function $F: A \rightarrow A$ is called identity function iff

$$
F=\{\langle x, x\rangle \in A \times A \mid x \in A\}
$$

- notation: $F=i d_{A}$
- composition of a relation R with an identity function with the appropriate domain yields R again:
- If $R \subseteq A \times B$, then
- $i d_{B} \circ R=R$
- $R \circ i d_{A}=R$
- If $F: A \rightarrow B$ is an injective function, then:
- $F \circ F^{-1} \subseteq i d_{B}$
- $F^{-1} \circ F=i d_{A}$
- Generally, it holds that:
- $i d_{\pi_{0}[R]} \subseteq R^{-1} \circ R$
- $i d_{\pi_{1}[R]} \subseteq R \circ R^{-1}$

Properties of relations

Many relations that are used in linguistic applications have certain structural properties. The most important ones are briefly discussed here; the apply to relations on a given set, i.e. $R \subseteq A \times A$.

Reflexivity

$R \subseteq A \times A$ is reflexive iff for all $x \in A$ it holds that $R(x, x)$.

Reflexivity

Example

- $A=\{1,2,3\}$
- $R_{1}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 3,1\rangle\}$
- $R_{2}=\{\langle 1,1\rangle,\langle 2,2\rangle\}$
R_{1} is reflexive but R_{2} is not (because $\langle 3,3\rangle \notin R_{2}$).
$R \subseteq A \times A$ is reflexive iff $i d_{A} \subseteq R$.
More examples
- "has the same final digit as"
- "has birthday on the same day as"
- "greater or equal"

Irreflexivity

- Relations that are not reflexive are called non-reflexive
- Relations that never connect an object to itself are called irreflexive.

Irreflexivity

R is irreflexive iff there is no object x such that $R(x, x)$.
In other words: R is irreflexive iff $R \cap i d_{A}=\emptyset$.

Examples

- $R_{3}=\{\langle 1,2\rangle,\langle 3,2\rangle\}$
- $R_{4}=\{\langle a, b\rangle \in \mathbb{N} \times \mathbb{N} \mid a<b\}$

Symmetry

Symmetry

A relation R is symmetric iff for all x, y with $R(x, y)$ it holds that $R(y, x)$.

In other words: R is symmetric iff $R=R^{-1}$.

Examples

- "married to"
- "relatively prime"
- "happened in the same year as"
- "cousin of"
- $\{\langle 1,2\rangle,\langle 2,1\rangle,\langle 3,2\rangle,\langle 2,3\rangle\}$
- $\{\langle 1,3\rangle,\langle 3,1\rangle\}$
- $\{\langle 2,2\rangle\}$

Asymmetry

Asymmetry

A relation R is asymmetric iff it never holds that both $R(x, y)$ and $R(y, x)$.

- Every asymmetric relation must be irreflexive.
- examples:
- $\{\langle 2,3\rangle,\langle 1,2\rangle\}$
- $\{\langle 1,3\rangle,\langle 2,3\rangle,\langle 1,2\rangle\}$
- $\{\langle 1,2\rangle\}$

Anti-symmetry

Anti-symmetry

A relation R is anti-symmetric iff whenever both $R(x, y)$ and $R(y, x)$, then $x=y$.

- R need not be reflexive to be anti-symmetric!
- Every asymmetric relation is also anti-symmetric.
- If R is anti-symmetric, then $R-i d_{A}$ is asymmetric.

Anti-symmetry

Examples for anti-symmetric relations

- "greater or equal"
- "divisible by"
- "is a subset of"
- $\{\langle 2,3\rangle,\langle 1,1\rangle\}$
- $\{\langle 1,1\rangle,\langle 2,2\rangle\}$
- $\{\langle 1,2\rangle,\langle 2,3\rangle\}$

Transitivity

Transitivity

A relation R is transitive iff whenever $R(x, y)$ and $R(y, z)$, then $R(x, z)$.

- examples:
- "older than"
- "richer than"
- "greater than"
- "ancestor of"
- equality
- $\{\langle 2,2\rangle\}$
- $\{\langle 1,2\rangle,\langle 2,3\rangle,\langle 1,3\rangle\}$
- $\{\langle 1,2\rangle,\langle 2,1\rangle,\langle 1,1\rangle,\langle 2,2\rangle\}$
- $\{\langle 1,2\rangle,\langle 2,3\rangle,\langle 1,3\rangle,\langle 3,2\rangle,\langle 2,1\rangle,\langle 3,1\rangle,\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}$
- R is transitive iff $R \circ R \subseteq R$.

Connectedness

Connectedness

A relation $R \subseteq A \times A$ is connected iff for all $x, y \in A$ with $x \neq y$: $R(x, y)$ or $R(y, x)$ (or both).

Examples

- "greater than" (as applied to the natural numbers)
- $\{\langle 1,2\rangle,\langle 3,1\rangle,\langle 3,2\rangle\}$
- $\{\langle 1,1\rangle,\langle 2,3\rangle,\langle 1,2\rangle,\langle 3,1\rangle,\langle 2,2\rangle\}$

Properties of the inverse and the complement

$R(\neq \emptyset)$	R^{-1}	\bar{R}
reflexive	reflexive	irreflexive
irreflexive	irreflexive	reflexive
symmetric	symmetric	symmetric
asymmetric	asymmetric	not symmetric
anti-symmetric	anti-symmetric	depends on R
transitive	transitive	depends on R
connected	connected	depends on R

Equivalence relations and partitions

Equivalence relations

A relation R is an equivalence relation iff R is reflexive, transitive and symmetric.

- examples:
- equality
- "has the same hair color as"
- "is of the same age as"
- "has the same remainder if divided by"
- notation:

$$
\llbracket a \rrbracket_{R}:=\{x \mid R(a, x)\}
$$

- $\llbracket a \rrbracket_{R}$ is the set of all objects which are reachable from a via R.

Equivalence relations and partitions

Partition

Let A be a set. The set $P \subseteq \wp(A)$ is a partition of A iff

- $\bigcup P=A$, and
- for all $X, Y \in P$ with $X \neq Y: X \cap Y=\emptyset$.
- Examples: Let $A=\{a, b, c, d, e\}$
- The following sets are partitions of A :
- $P_{1}=\{\{a, c, d\},\{b, e\}\}$
- $P_{2}=\{\{a\},\{b\},\{c\},\{d\},\{e\}\}$
- $P_{3}=\{\{a, b, c, d, e\}\}$
- The following sets are not partitions of A :
- $C=\{\{a, b, c\},\{b, d\},\{e\}\}$
- $D=\{\{a\},\{b, e\},\{c\}\}$

Equivalence relations and partitions

There is a tight connection between equivalence relations and partitions.

- Let $R \subseteq A \times A$ be an equivalence relation. Then the following set is a partition of $\pi_{0}[R]$:

$$
P_{R}=\left\{x \in \wp(A) \mid \text { there is a } y \in A \text { such that } x=\llbracket y \rrbracket_{R}\right\}
$$

- Let P be a partition of A. Then the following is an equivalence relation:
$R_{P}=\{\langle x, y\rangle \in A \times A \mid$ there is an $X \in P$ with $x \in X$ and $y \in X\}$
(Instead of " $R_{P}(a, b)$ " we sometimes write " $a \equiv_{P} b$ ".)

Equivalence relations and partitions

- example:
- $A=\{1,2,3,4,5\}$

$$
\begin{aligned}
R= & \{\langle 1,1\rangle,\langle 1,3\rangle,\langle 3,1\rangle,\langle 3,3\rangle,\langle 2,2\rangle,\langle 2,4\rangle \\
& \langle 4,2\rangle,\langle 4,5\rangle,\langle 4,4\rangle,\langle 5,2\rangle,\langle 5,4\rangle,\langle 5,5\rangle,\langle 2,5\rangle\}
\end{aligned}
$$

- The corresponding partition is:

$$
P_{R}=\{\{1,3\},\{2,4,5\}\}
$$

- Exercise: Let

$$
\begin{aligned}
R= & \{\langle 1,1\rangle,\langle 1,2\rangle,\langle 2,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle,\langle 3,5\rangle \\
& \langle 5,3\rangle,\langle 5,5\rangle,\langle 4,4\rangle\}
\end{aligned}
$$

What is the corresponding partition P_{R} ?

