Mathematics for linguists

Gerhard Jäger
gerhard.jaeger@uni-tuebingen.de
Uni Tübingen, WS 2009/2010

November 10, 2009

Theory of formal languages

Formal language:

- set of strings of symbols
- formal languages (for the time being) only model the form aspect of natural languages
- basic assumption: any string of symbols either belongs or does not belong to a given language \Rightarrow idealization
- all interesting formal langauges are infinite (i.e. infinte sets of finite strings)
- formal grammar: finite description of a formal language
- (language) automata: abstract machines (computer programs) that are able to decide whether or not a string belongs to a given formal language

Foundations

- Let a finite set A of symbols (called the alphabet or the vocabulary) be given
- (symbol) string over A : finite sequence of elements of A
- example:
- $A=\{a, b, c\}$ (for instance $\{$ Peter, Mary, sees $\}$)
- strings over A :
- $\vec{x}:=a b c$ (Peter Mary sees)
- $\vec{y}:=a c b b c a$ (Peter sees Mary Mary sees Peter)
- $\vec{z}:=b a c b b c a$ (Mary Peter sees Mary Mary sees Peter)
- length of a string: number of symbols that occur in the string (if the same symbol occurs more than once, it is counted more than once)
- $l(\vec{x})=3$
- $l(\vec{y})=6$
- $l(\vec{z})=7$

Foundations

- A string of length n over the vocabulary A can be modeled set theoretically as
- a function from $\{0,1, \ldots, n-1\}$ to A
- 'Peter sees Mary Mary sees Peter' comes out as the function

$f:\{0,1,2,3,4,5\} \rightarrow$	\{Peter, Mary, sees $\}$ with		
0	\mapsto Peter or, equivalently	$f(0)$	$=$ Peter
1	\mapsto sees	$f(1)$	$=$ sees
2	\mapsto Mary	$f(2)$	$=$ Mary
3	\mapsto Mary	$f(3)$	$=$ Mary
4	\mapsto sees	$f(4)$	$=$ sees
5	\mapsto Peter	$f(5)$	$=$ Peter

Foundations

- A string of length n over the vocabulary A can be modeled set theoretically as
- a function from $\{0,1, \ldots, n-1\}$ to A
- Important: there is a difference between an element $a \in A$ and the string a of length 1 , which only consists of the symbol a. The latter is, strictly speaking, the function $f:\{0\} \rightarrow A$ with $f(0)=a$.
- There is exactly one string of length 0 , the empty string. It is written as ϵ. Technically, it is the (empty) mapping $\epsilon:\{ \} \rightarrow A$ (for any arbitrary alphabet A). (sometimes written as e or as \rangle, since it can be considered a 0 -tuple).
- The set of all finite strings over A (including the empty string) is written as A^{*}.

Foundations

Concatenation

- most important operation over strings: concatenation (dt. Verkettung), written as "." (or " ${ }^{\prime}$ ")
- juxtaposition of two strings:
- $a b c \cdot a b c=a b c a b c$
- daaac $\cdot \epsilon=$ daaac
- $\epsilon \cdot c a b b b a=c a b b b a$
- associative: for arbitrary strings $\vec{u}, \vec{v}, \vec{w} \in A^{*}$:

$$
(\vec{u} \cdot \vec{v}) \cdot \vec{w}=\vec{u} \cdot(\vec{v} \cdot \vec{w})
$$

- ϵ is a neutral element for concatenation:

$$
\epsilon \cdot \vec{u}=\vec{u}=\vec{u} \cdot \epsilon
$$

Foundations

Reversal of a string

- Notation: If \vec{u} is a string, \vec{u}^{R} is the reversal of this string.
- for instance: $(a c b a b)^{R}=b a b c a$
- for the empty string, we have: $\epsilon^{R}=\epsilon$
- recursive definition:

Definition

Let A be an alphabet.
1 If \vec{v} is a string of length 0 (i.e. $\vec{v}=\epsilon$), then $\vec{v}^{R}=\vec{v}$.
2 If \vec{v} is a string of length $n+1$, then it can be written as $\vec{w} a$ (with $\vec{w} \in A^{*}$ and $a \in A$). It holds that: $(\vec{w} a)^{R}=a \vec{w}^{R}$.

Foundations

- Connection between concatenation and reversal:

$$
(\vec{u} \cdot \vec{v})^{R}=\vec{v}^{R} \cdot \vec{u}^{R}
$$

- substring: \vec{v} is a substring of $\vec{u} \in A^{*}$ iff there are $\vec{z}, \vec{w} \in A^{*}$ such that $\vec{u}=\vec{z} \cdot \vec{v} \cdot \vec{w}$.
- If \vec{v} is a substring of \vec{u} and $l(\vec{v})<l(\vec{u})$, then \vec{v} is a proper substring of \vec{u}.
- prefix: \vec{v} is a prefix of $\vec{u} \in A^{*}$ iff ther is some $\vec{w} \in A^{*}$ such that $\vec{u}=\vec{v} \cdot \vec{w}$.
- Suffix: \vec{v} is a Suffix of $\vec{u} \in A^{*}$ iff. there is a $\vec{w} \in A^{*}$ such that $\vec{u}=\vec{w} \cdot \vec{v}$.

Languages

Formal languages

A (formal) Language over an alphabet A is a subset of A^{*}, i.e. a set of strings over A.

- Languages can be finite or infinite.
- As linguists, we are mainly interested in infinite languages.
- Not all languages have a finite description.
- Humboldt: (Natural) languages make "infinite use of finite means" \Rightarrow natural languages are infinite, but they have finite descriptions (grammars)

Languages

Examples for formal languages

- $L=\left\{\vec{x} \in\{a, b\}^{*} \mid \vec{x}\right.$ contains the same number of a and b (in any order) $\}$
- $L_{1}=\left\{\vec{x} \in\{a, b\}^{*} \mid \vec{x}=a^{n} b^{n}, n \geq 0\right.$ (i.e. a string of n times a, followed by an equal number of b) \}
- $L_{2}=\left\{\vec{x} \in\{a, b\}^{*} \mid \vec{x}\right.$ contains n times b and n^{2} times a, for $n \in \mathbb{N}\}$

Grammars

(Formal) Grammars are precise descriptions of formal languages. A grammar consists of

- two alphabets, the terminal alphabet V_{T} and the Non-terminal alphabet V_{N},
- a start symbol S, and
- a set of (replacement) rules. A replacement rule consists of two parts, the left hand side and the right hand side.
We obtain a derivation for a grammar by starting with the string S, and successively replacing substrings with match with the right hand side of a rule by the left hand side of the same rule.

Grammars

Examples

$$
\begin{aligned}
& V_{T} \text { (terminal alphabet) }=\{a, b\} \\
& V_{N}(\text { non-terminal alphabet })=\{S, A, B\} \\
& S \text { (start symbol) } \\
& R \text { (rules) }=\left\{\begin{array}{lll}
S & \rightarrow & A B S \\
S & \rightarrow & \epsilon \\
A B & \rightarrow & B A \\
B A & \rightarrow & A B \\
A & \rightarrow & a \\
B & \rightarrow & b
\end{array}\right\}
\end{aligned}
$$

Grammars

- Convention: terminal symbols are written as lower case letters and non-terminal symbols as upper case letters.
- Derivation for the grammar from the previous slide:

$$
\begin{aligned}
& S \Rightarrow A B S \Rightarrow A B A B S \Rightarrow A B A B \Rightarrow A B B A \Rightarrow A B b A \Rightarrow \\
& a B b A \Rightarrow a b b A \Rightarrow a b b a
\end{aligned}
$$

- We cannot apply any replacement rules to $a b b a$ anymore, because it consists exclusively of terminal symboles. Such a string is called terminal string.
- The language that is generated by a grammar is defined as the set of all terminal strings that can be derived from the start symbol via (repeated) applications of the replacement rules.

Grammars

Definition ((Formal) Grammar)

A (formal) grammar is a 4-tuple $\left\langle V_{T}, V_{N}, S, R\right\rangle$, where V_{T} and V_{N} are finite, mutually disjoint sets (i.e. $V_{T} \cap V_{N}=\emptyset$), $S \in V_{N}$, and $R \subseteq\left(V_{T} \cup V_{N}\right)^{*} \times\left(V_{T} \cup V_{N}\right)^{*}$. Furthermore, the left hand side of each rule contains at least one element of V_{N}.

We usually write rules as $\alpha \rightarrow \beta$ rather than $\langle\alpha, \beta\rangle$.

Grammars

Definition (Derivation)

Let $G=\left\langle V_{T}, V_{N}, S, R\right\rangle$ be a grammar. A derivation for G is a sequence of strings $\vec{x}_{0}, \vec{x}_{1}, \ldots, \vec{x}_{n}(n \geq 0)$, such that for every \vec{x}_{i} with $0 \leq i<n$ it holds that

- $\vec{x}_{i}=\vec{u} \cdot \vec{v} \cdot \vec{w}$,
- there is a rule $\vec{v} \rightarrow \vec{z} \in R$, and
- $\vec{x}_{i+1}=\vec{u} \cdot \vec{z} \cdot \vec{w}$.

Grammars

Definition (Generation)

A grammar G generates a string $\vec{x} \in V_{T}^{*}$ if and only if there is a derivation $\vec{x}_{0}, \ldots, \vec{x}_{n}$ for G such that $\vec{x}_{0}=S$ and $\vec{x}_{n}=\vec{x}$.

Definition (Generated language)
The language that is generated by a grammar G (written as $L(G))$ is the set of all strings that are generated by G.

