Mathematics for linguists

Gerhard Jäger

gerhard.jaeger@uni-tuebingen.de

Uni Tübingen, WS 2009/2010

November 10, 2009

Theory of formal languages

Formal language:

- set of strings of symbols
- formal languages (for the time being) only model the form aspect of natural languages
- basic assumption: any string of symbols either belongs or does not belong to a given language ⇒ idealization
- all interesting formal langauges are infinite (i.e. infinite sets of finite strings)
- formal grammar: finite description of a formal language
- (language) automata: abstract machines (computer programs) that are able to decide whether or not a string belongs to a given formal language

- Let a **finite** set A of symbols (called the *alphabet* or the *vocabulary*) be given
- (symbol) string over A: finite sequence of elements of A
- example:
 - $A = \{a, b, c\}$ (for instance {Peter, Mary, sees})
 - strings over A:
 - $\vec{x} := abc$ (Peter Mary sees)
 - $ec{y} := acbbca$ (Peter sees Mary Mary sees Peter)
 - $\vec{z} := bacbbca$ (Mary Peter sees Mary Mary sees Peter)
- *length* of a string: number of symbols that occur in the string (if the same symbol occurs more than once, it is counted more than once)
 - $l(\vec{x}) = 3$
 - $l(\vec{y}) = 6$
 - $l(\vec{z}) = 7$

- A string of length \boldsymbol{n} over the vocabulary \boldsymbol{A} can be modeled set theoretically as
 - a function from $\{0, 1, \dots, n-1\}$ to A
 - 'Peter sees Mary Mary sees Peter' comes out as the function

$f: \{0, 1, 2, 3, 4, 5\} \rightarrow \{\texttt{Peter}, \texttt{Mary}, \texttt{sees}\}$ with						
0	\mapsto	Peter	or, equivalently	f(0)	=	Peter
1	\mapsto	sees		f(1)	=	sees
2	\mapsto	Mary		f(2)	=	Mary
3	\mapsto	Mary		f(3)	=	Mary
4	\mapsto	sees		f(4)	=	sees
5	\mapsto	Peter		f(5)	=	Peter

- A string of length \boldsymbol{n} over the vocabulary \boldsymbol{A} can be modeled set theoretically as
 - a function from $\{0,1,\ldots,n-1\}$ to A
- Important: there is a difference between an element $a \in A$ and the string a of length 1, which only consists of the symbol a. The latter is, strictly speaking, the function $f : \{0\} \rightarrow A$ with f(0) = a.
- There is exactly one string of length 0, the empty string. It is written as *ϵ*. Technically, it is the (empty) mapping
 ϵ : { } → A (for any arbitrary alphabet A). (sometimes written as e or as ⟨⟩, since it can be considered a 0-tuple).
- The set of all finite strings over A (including the empty string) is written as A^* .

Concatenation

- most important operation over strings: concatenation (dt. Verkettung), written as "·" (or "─")
- juxtaposition of two strings:
 - $abc \cdot abc = abcabc$
 - $daaac \cdot \epsilon = daaac$
 - $\epsilon \cdot cabbba = cabbba$
- associative: for arbitrary strings $\vec{u}, \vec{v}, \vec{w} \in A^*$:

$$(\vec{u}\cdot\vec{v})\cdot\vec{w}=\vec{u}\cdot(\vec{v}\cdot\vec{w})$$

• ϵ is a **neutral element** for concatenation:

$$\epsilon \cdot \vec{u} = \vec{u} = \vec{u} \cdot \epsilon$$

Reversal of a string

- Notation: If \vec{u} is a string, \vec{u}^R is the reversal of this string.
- for instance: $(acbab)^R = babca$
- for the empty string, we have: $\epsilon^R=\epsilon$
- recursive definition:

Definition

Let A be an alphabet.

- 1 If \vec{v} is a string of length 0 (i.e. $\vec{v} = \epsilon$), then $\vec{v}^R = \vec{v}$.
- 2 If \vec{v} is a string of length n + 1, then it can be written as $\vec{w}a$ (with $\vec{w} \in A^*$ and $a \in A$). It holds that: $(\vec{w}a)^R = a\vec{w}^R$.

• Connection between concatenation and reversal:

$$(\vec{u}\cdot\vec{v})^R=\vec{v}^R\cdot\vec{u}^R$$

- substring: \vec{v} is a substring of $\vec{u} \in A^*$ iff there are $\vec{z}, \vec{w} \in A^*$ such that $\vec{u} = \vec{z} \cdot \vec{v} \cdot \vec{w}$.
- If \vec{v} is a substring of \vec{u} and $l(\vec{v}) < l(\vec{u})$, then \vec{v} is a proper substring of \vec{u} .
- prefix: \vec{v} is a *prefix* of $\vec{u} \in A^*$ iff ther is some $\vec{w} \in A^*$ such that $\vec{u} = \vec{v} \cdot \vec{w}$.
- Suffix: \vec{v} is a Suffix of $\vec{u} \in A^*$ iff. there is a $\vec{w} \in A^*$ such that $\vec{u} = \vec{w} \cdot \vec{v}$.

Languages

Formal languages

A (formal) **Language** over an alphabet A is a subset of A^* , i.e. a set of strings over A.

- Languages can be finite or infinite.
- As linguists, we are mainly interested in infinite languages.
- Not all languages have a finite description.
- Humboldt: (Natural) languages make "infinite use of finite means" ⇒ natural languages are infinite, but they have finite descriptions (grammars)

Languages

Examples for formal languages

- $L = {\vec{x} \in {a, b}^* | \vec{x} \text{ contains the same number of } a \text{ and } b \text{ (in any order)}}$
- $L_1 = \{\vec{x} \in \{a, b\}^* | \vec{x} = a^n b^n, n \ge 0 \text{ (i.e. a string of } n \text{ times } a, followed by an equal number of } b \}$
- $L_2 = \{\vec{x} \in \{a, b\}^* | \vec{x} \text{ contains } n \text{ times } b \text{ and } n^2 \text{ times } a, \text{ for } n \in \mathbb{N}\}$

(Formal) Grammars are precise descriptions of formal languages. A grammar consists of

- two alphabets, the terminal alphabet V_T and the Non-terminal alphabet V_N ,
- $\bullet\,$ a start symbol S, and
- a set of (replacement) rules. A replacement rule consists of two parts, the left hand side and the right hand side.

We obtain a **derivation** for a grammar by starting with the string S, and successively replacing substrings with match with the right hand side of a rule by the left hand side of the same rule.

Examples

$$V_T \text{ (terminal alphabet)} = \{a, b\}$$

$$V_N \text{ (non-terminal alphabet)} = \{S, A, B\}$$

$$S \text{ (start symbol)}$$

$$R \text{ (rules)} = \begin{cases} S \rightarrow ABS \\ S \rightarrow \epsilon \\ AB \rightarrow BA \\ BA \rightarrow AB \\ A \rightarrow a \\ B \rightarrow b \end{cases}$$

- Convention: terminal symbols are written as lower case letters and non-terminal symbols as upper case letters.
- Derivation for the grammar from the previous slide:

 $S \Rightarrow ABS \Rightarrow ABABS \Rightarrow ABAB \Rightarrow ABBA \Rightarrow ABbA \Rightarrow aBbA \Rightarrow abbA \Rightarrow abba$

- We cannot apply any replacement rules to *abba* anymore, because it consists exclusively of terminal symboles. Such a string is called **terminal string**.
- The language that is **generated** by a grammar is defined as the set of all terminal strings that can be derived from the start symbol via (repeated) applications of the replacement rules.

Definition ((Formal) Grammar)

A (formal) grammar is a 4-tuple $\langle V_T, V_N, S, R \rangle$, where V_T and V_N are finite, mutually disjoint sets (i.e. $V_T \cap V_N = \emptyset$), $S \in V_N$, and $R \subseteq (V_T \cup V_N)^* \times (V_T \cup V_N)^*$. Furthermore, the left hand side of each rule contains at least one element of V_N .

We usually write rules as $\alpha \rightarrow \beta$ rather than $\langle \alpha, \beta \rangle$.

Definition (Derivation)

Let $G = \langle V_T, V_N, S, R \rangle$ be a grammar. A **derivation** for G is a sequence of strings $\vec{x}_0, \vec{x}_1, \ldots, \vec{x}_n (n \ge 0)$, such that for every \vec{x}_i with $0 \le i < n$ it holds that

- $\vec{x}_i = \vec{u} \cdot \vec{v} \cdot \vec{w}$,
- there is a rule $\vec{v} \rightarrow \vec{z} \in R$, and
- $\vec{x}_{i+1} = \vec{u} \cdot \vec{z} \cdot \vec{w}$.

Definition (Generation)

A grammar G generates a string $\vec{x} \in V_T^*$ if and only if there is a derivation $\vec{x}_0, \ldots, \vec{x}_n$ for G such that $\vec{x}_0 = S$ and $\vec{x}_n = \vec{x}$.

Definition (Generated language)

The language that is **generated by** a grammar G (written as L(G)) is the set of all strings that are generated by G.