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Regular expressions

• fourth kind (next to type-3 grammars, deterministic and
non-deterministic finite automata) to describe regular
languages

• very useful for search in texts

• important technique in corpus studies

• many software packages include implementations of regular
expressions, for instance

• Emacs
• Word
• OpenOffice
• Perl
• Python
• Unix-Tools wie grep/egrep oder sed

• specific syntax might differ slightly, but the underlying
concepts are identical
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Regular expressions

Definition (Syntax of regular expressions)

Let Σ be a finite alphabet.

• ∅ is a regular expression.

• ε is a regular expression.

• For each a ∈ Σ: a is a regular expression.

• If α and β are regular expressions, then
• αβ,
• (α ∪ β) (sometimes written as α|β), and
• α∗

are regular expressions.

In concrete implementations, the syntax is usually extended by
expressions for word boundaries and line boundaries, finite classes
of single symbols, finite iterations etc.
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Regular expressions

Regular expressions are interpreted recursively as formal languages
over Σ∗. For this, two operations over formal languages have to be
defined, concatenation and iteration.
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The concatenation of two formal
languages

Definition

Let L1 and L2 be two formal languages. The concatenation L1 ·L2

of L1 and L2 is defined as

L1 · L2 = {~x · ~y|~x ∈ L1, ~y ∈ L2}
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The concatenation of two formal
languages

Example:

• L1 = {anbn|n > 1}
• L2 = {cm|m ≥ 0}
• L1 · L2

= {aabb, aabbc, aabbcc, aabbccc, aabbcccc, aaabbbc, ...}
= {anbncm|n > 1,m ≥ 0}

• Notational convention:

L0 = {ε}
L1 = L

L2 = L · L
Ln+1 = Ln · L
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Iteration

Definition

Let L be a formal language. The iteration of L is defined as
L∗ = { ~x | there is an n ∈ N, such that ~x = ~x1 · ~x2 · · · · · ~xn

and ~xi ∈ L für 1 ≤ i ≤ n }

• Note that the empty string ε is also an element of L∗, for
arbitrary L. (n ist in dem Fall gleich 0.)

• L∗ can also be defined as

L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·
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Regular expressions

The function L(·) assigns a formal language to each regular
expression.

Definition

L(∅) = ∅
L(ε) = {ε}
L(a) = {a} (wenn a ∈ Σ)

L(αβ) = L(α) · L(β)
L((α ∪ β)) = L(α) ∪ L(β)

L(α∗) = L(α)∗
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Regular expressions, type-3 grammars and
finite automata

Three kinds of operations over formal languages can be expressed
using regular expression,

• union,

• concatenation, and

• iteration.

The class of regular languages is closed under these operations.
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Union of regular languages

Theorem

If L1 and L2 are regular languages, then L1 ∪ L2 is also a regular
language.
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Union of regular languages

Idea of proof:
If L1 is a regular language, there is a type-3 grammar
G1 = 〈VT,1, VN,1, S1, R1〉 that generates L1. (Without restriction
of generality, we asume that VN,1 ∩ VN,2 = ∅.)
Likewise, there is a type-3 grammar G2 = 〈VT,2, VN,2, S2, R2〉, that
generates L2. We construct a new grammar G = 〈VT , VN , S,R〉
(with S 6∈ VN,1 ∪ VN,2) that generates L1 ∪ L2:

• VT = VT,1 ∪ VT,2

• VN = VN,1 ∪ VN,2 ∪ {S}
• R = R1 ∪R2

∪ {S → α|S1 → α ∈ R1}
∪ {S → α|S2 → α ∈ R2}
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Concatenation of regular languages

Theorem

If L1 and L2 are regular languages, then L1 · L2 is also a regular
language.
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Concatenation of regular languages

Idea of proof:
If L1 is a regular language, then there is a type-3 grammar
G1 = 〈VT,1, VN,1, S1, R1〉 that generates L1. (Without restriction
of generality, we assume that VN,1 ∩ VN,2 = ∅.)
Likewise, there is a type-3 grammar G2 = 〈VT,2, VN,2, S2, R2〉 that
generates L2. We construct a new grammar G = 〈VN , VT , S1, R〉
that generates L1 · L2:

• VT = VT,1 ∪ VT,2

• VN = VN,1 ∪ VN,2 ∪ {S}
• R = R2 ∪ {A→ xS2|A→ x ∈ R1}
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Iteration of regular languages

Theorem

If L is a regular language, then L∗ is also a regular language.
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Iteration of regular languages

Idea of proof:
If L is a regular language, then there is a type-3 grammar
G = 〈VT , VN , S,R〉 that generates L.
We construct a new grammar G′ = 〈VN , VT , S,R

′〉 that generates
L∗:

R′ = R ∪ {A→ xS|A→ x ∈ R}
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Finite languages are regular

Theorem

Every finite language is a regular language.

Idea of proof:
We construct a type-3 grammar that generates L as follows:

R = {S → ~x|~x ∈ L}
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Regular languages and regular expressions

Theorem

If α is a regular expression, then L(α) is a regular language.

Idea of proof:
If α = ε, α = {ε} or α = {a} for some a ∈ Σ, then L(α) is finite — and
therefore also regular. Furthermore, it follows from the previous theorem:

• If L(α) and L(β) are regular, then L((α ∪ β)) = L(α) ∪ L(β) and
L(αβ) = L(α) · L(β) are also regular.

• If L(α) is regular, then L(α∗) = L(α)∗ is also regular.

Therefore it generally holds: If α does not contain any occurrences of

concatenation, union or iteration, then L(α) is regular. It also holds: if

L(α) is regular for all regular expressions α that contain at most n

occurrences of concatenation, union or iteration, then L(α) is also

regular for all α that contain n+ 1 occurrences of these operations. The

theorem hence follows via complete induction.
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Regular languages and regular expressions

Theorem

If L is a regular language, then there is a regular expression α such
that L(α) = L.

The proof for this theorem is too complex to be discussed in this
course. It is based on a construction that transforms a DFA into an
equivalent regular expression.
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Regular expressions, grammars and
automata

Theorem

Regular expressions, type-3 grammars, deterministic finite
automata and non-deterministic finite automata all describe the
same class of languages.
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