Mathematics for linguists

Gerhard Jager
gerhard. jaeger@Quni-tuebingen.de

Uni Tiibingen, WS 2009,/2010

November 24, 2009

1/19



Regular expressions

fourth kind (next to type-3 grammars, deterministic and
non-deterministic finite automata) to describe regular
languages

very useful for search in texts

important technique in corpus studies

many software packages include implementations of regular
expressions, for instance
e Emacs
Word
OpenOffice
Perl
Python
Unix-Tools wie grep/egrep oder sed

specific syntax might differ slightly, but the underlying
concepts are identical

2/19



Regular expressions

Definition (Syntax of regular expressions)

Let X be a finite alphabet.

() is a regular expression.

e ¢ is a regular expression.
For each a € X: a is a regular expression.
If o and (3 are regular expressions, then

* af,
e (U ) (sometimes written as «|3), and
o o

are regular expressions.

In concrete implementations, the syntax is usually extended by
expressions for word boundaries and line boundaries, finite classes
of single symbols, finite iterations etc.

3/19



Regular expressions

Regular expressions are interpreted recursively as formal languages
over X*. For this, two operations over formal languages have to be
defined, concatenation and iteration.

4/19



The concatenation of two formal
languages

Definition

Let L; and Ls be two formal languages. The concatenation Ly - Lo
of L1 and Ls is defined as

Li-Ly={%-9y|Z € L1,§ € L2}

5/19



The concatenation of two formal
languages

Example:
o L ={a""n>1}
o Ly={c"m >0}
° Ly Lo
= {aabd, aabbc, aabbee, aabbeee, aabbecee, aaabbbe, ...}
= {a™"c™|n > 1,m > 0}

e Notational convention:

L’ = {e
L' = L
I? = L-L

Lt = "L

6/19



Iteration

Definition

Let L be a formal language. The iteration of L is defined as

L*={Z|thereisann € N, such that ¥ =1 - Zo - --- - &y
and Z; € Lfirl<i<n}

e Note that the empty string € is also an element of L*, for
arbitrary L. (n ist in dem Fall gleich 0.)

e [* can also be defined as

L*=I1°UuL'uL?u--.

7/19



Regular expressions

The function L(-) assigns a formal language to each regular

expression.

Definition

0

{e}

{a} (wenn a € X))
L(a) - L(B)

L(a) U L(B)
L(a)*

8/19



Regular expressions, type-3 grammars and
finite automata

Three kinds of operations over formal languages can be expressed
using regular expression,

e union,
e concatenation, and
e jteration.

The class of regular languages is closed under these operations.

9/19



Union of regular languages

Theorem

If Ly and Loy are regular languages, then Ly U Lo is also a regular
language.

10/19



Union of regular languages

Idea of proof:

If Ly is a regular language, there is a type-3 grammar

G1 = (Vr1,Vn 1,51, R1) that generates L. (Without restriction
of generality, we asume that Viy 1 N V2 = 0.)

Likewise, there is a type-3 grammar G2 = (Vr2, Vv 2, S2, R2), that
generates Ly. We construct a new grammar G = (Vp, Vi, S, R)
(with S & V.1 U Vv 2) that generates Lj U Lo:

o Vr=Vr1UVra
o Vny = VN71 U VN72 U {S}

e R = RiURy
U {S—>04]Sl—>a€R1}
U {S"O[|SQ*>OZ€R2}

11/19



Concatenation of regular languages

Theorem

If Ly and Lo are regular languages, then Ly - Ly is also a regular
language.

12/19



Concatenation of regular languages

Idea of proof:

If Ly is a regular language, then there is a type-3 grammar
G1=(Vr1,Vn1,S1, Ri) that generates L. (Without restriction
of generality, we assume that Viy; N V2 = 0.)

Likewise, there is a type-3 grammar G = (Vr2, Vv 2, S2, R2) that
generates Lo. We construct a new grammar G = (Viy, Vi, S1, R)
that generates L - Lo:

o Vr=Vr1UVra
o Vny = ‘/}J71 U ‘/b]72 U {:f;}
e R=RyU{A — 25]A —z € Ry}

13/19



Iteration of regular languages

Theorem

If L is a regular language, then L* is also a regular language.

14/19



Iteration of regular languages

Idea of proof:

If L is a regular language, then there is a type-3 grammar

G = (Vp,Vn, S, R) that generates L.

We construct a new grammar G’ = (Viy, Vp, S, R') that generates
L*:

R =RU{A — zS|A — z € R}

15/19



Finite languages are regular

Theorem

Every finite language is a regular language.

Idea of proof:
We construct a type-3 grammar that generates L as follows:

R={S—ilze L}

16/19



Regular languages and regular expressions

Theorem

If a is a regular expression, then L(«) is a regular language.

Idea of proof:
If « =€, a ={e} or a ={a} for some a € ¥, then L(«) is finite — and
therefore also regular. Furthermore, it follows from the previous theorem:

e If L(a) and L(f) are regular, then L((awU 3)) = L(a) U L(S) and
L(af) = L(a) - L(B) are also regular.

o If L(a) is regular, then L(a*) = L(«)* is also regular.

Therefore it generally holds: If o does not contain any occurrences of
concatenation, union or iteration, then L(«) is regular. It also holds: if
L(«) is regular for all regular expressions « that contain at most n
occurrences of concatenation, union or iteration, then L(«) is also
regular for all « that contain n + 1 occurrences of these operations. The
theorem hence follows via complete induction.

17/19



Regular languages and regular expressions

Theorem

If L is a regular language, then there is a regular expression « such
that L(a) = L.

The proof for this theorem is too complex to be discussed in this
course. It is based on a construction that transforms a DFA into an
equivalent regular expression.

18/19



Regular expressions, grammars and
automata

Theorem

Regular expressions, type-3 grammars, deterministic finite
automata and non-deterministic finite automata all describe the
same class of languages.

19/19



