Algorithms for Language Reconstruction Kondrak's 2002 thesis

Armin W. Buch

February 8, 2013

Armin Buch

Introduction

Alignment

Phoneme similarit ALINE Evaluation

dentification of cognates

Evaluation

Identification of sound correspondences CORDI Evaluation

How to reconstruct a proto-language?

- Identification of cognates
- Alignment of cognates
- Discovery of sound correspondences
- Reconstruction of proto-forms
- Kondrak contributes unsupervised algorithms for the first three tasks

Armin Buch

Introduction

Alignment

Phoneme similarit ALINE

Identification of cognates cogrt

Evaluation

Identification of sound correspondences CORDI Evaluation

Alignment

- Alignment is usually calculated with a dynamic programming algorithm (Wagner-Fischer)
- It needs a distance metric
 - 1. $\forall a, b: d(a, b) \ge 0$ nonnegative property2. $\forall a, b: d(a, b) = 0 \Leftrightarrow a = b$ zero property3. $\forall a, b: d(a, b) = d(b, a)$ symmetry4. $\forall a, b, c: d(a, b) + d(b, c) \ge d(a, c)$ triangle inequality

Table 4.2: The metric axioms.

Kondrak adapts extensions to the algorithm to phonetic data

Armin Buch

Introduction

Alignment

honeme similarit ALINE

Identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Similarity vs. distance

- To a large extent, similarity measures and distance metrics can be exchanged
- The metric properties do not always make sense for phoneme distance (we will see examples)
- Linguistic intuitions are sometimes easier to express as similarities
- > The alignment algorithm is easily adapted to similarities
 - Assign similarity scores instead of costs
 - Choose the maximum, not the minimum

Armin Buch

Introduction

Alignment

Phoneme similarit ALINE Evaluation

Identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Local alignment

- Let the usual alignment be called *global*
- Local alignment strips off prefixes and suffixes
- by having no indel costs at the beginning and at the end of words
- instead, it maximizes the similarity of similar substrings (possibly the root)

	$\ $	$\bar{\mathbf{a}}$	р	а	k	0	$\ $	$s\bar{s}s$
w		$\bar{\mathbf{a}}$	\mathbf{p}	i	k	0		nōha

Table 4.10: An example of local alignment.

Armin Buch

Introduction

Alignment

Phoneme similarit ALINE Evaluation

identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Half-local alignment

- Words tend to change a lot at their right edge, while the left edge is quite stable
- Half-local alignment aligns globally on the left, and locally on the right

$\ $	-	$\bar{\mathrm{a}}$	\mathbf{p}	a	k	0	$\ $	$s\bar{s}s$
$\ $	w	ā	р	i	k	0	$\ $	nōha

Table 4.13: An example of half-local alignment.

Armin Buch

Introduction

Alignment

honeme similari ALINE

dentification of ognates

COGIT

Identification of sound correspondences CORDI Evaluation

Gap penalties

- Gaps can be longer than just one segment
- e.g. by loss of an entire syllable
- In order to weigh this less than a series of deletions, gap costs can be calculated with a linear function
- initial gap cost + segment cost * number of deleted segments

Armin Buch

Introduction

Alignment

Phoneme similari ALINE

Identification of cognates cogit

Evaluation

Identification of sound correspondences CORDI Evaluation

Compression and expansion

- Many-to-one and one-to-many relations can be modeled as substitution plus deletion/insertion
- but this is not linguistically adequate
- and its cost/similarity would be judged differently
- As an example, consider En. 'fact' vs. Sp. 'hecho'

f	а	k	t	f	а	k	t	-	f	а	kt
-	е	č	-	-	е	-	č		-	е	č

Table 4.15: An example of cognate alignment that requires the operation of compression/expansion.

Armin Buch

Introduction

Alignment
Phoneme similarity
ALINE
Evaluation
COGIT
Evaluation
correspondences
CORDI
Evaluation
ıtlook

Transposition

- In phonology, transposition is rare
- ▶ Span. cocodrilo
- The most common instance is metathesis of adjacent segments
- Metathesis is highly irregular
- For practical purposes, it will be ignored here

Armin Buch

Introduction

Alignment

honeme similarit ALINE

Identification of cognates

Evaluation

Identification of sound correspondences CORDI Evaluation

Phoneme similarity

► The easiest measure of phoneme distance is identity

	а	i	У	n	\mathbf{p}	r	s	
а	0	1	1	1	1	1	1	E
i	1	0	1	1	1	1	1	
у	1	1	0	1	1	1	1	
n	1	1	1	0	1	1	1	I
р	1	1	1	1	0	1	1	C
r	1	1	1	1	1	0	1	
\mathbf{s}	1	1	1	1	1	1	0	

Table 4.17: An elementary cost function.

Armin Buch

Introduction

Alignment

Phoneme similarity ALINE Evaluation

dentification of ognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Covington's measure

- Covington (1996) defines a phonetic distance measure
- gap penalty equals 10 base costs + 40 per segment

Penalty	Conditions	Е
0	Exact match of consonants or glides (w, y)	
5	Exact match of vowels (reflecting the fact that the aligner	С
	should prefer to match consonants rather than vowels if	E
	it must choose between the two)	
10	Match of two vowels that differ only in length, or i and y ,	CC
	or u and w	Е
30	Match of two dissimilar vowels	0
60	Match of two dissimilar consonants	
100	Match of two segments with no discernible similarity	
40	Skip preceded ² by another skip in the same word (reflecting	
	the fact that affixes tend to be contiguous)	
50	Skip not preceded by another skip in the same word	

Table 4.18: Covington's [1996] "evaluation metric".

Armin Buch

Introduction

Alignmen

Phoneme similarity ALINE Evaluation

Identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Phoneme similarity 2

Covington's measure has a low resolution

	а	i	У	n	р	r	\mathbf{S}	
а	5	30	100	100	100	100	100	
i	30	5	10	100	100	100	100	
у	100	10	0	60	60	60	60	
n	100	100	60	0	60	60	60	
р	100	100	60	60	0	60	60	
r	100	100	60	60	60	0	60	
s	100	100	60	60	60	60	0	

Table 4.19: A partial distance matrix for Covington's distance function.

Armin Buch

Introduction

Alignmen

Phoneme similarity ALINE

dentification of cognates COGIT Evaluation

correspondences CORDI Evaluation

Covington's measure 2

- ▶ it is not a metric
 - zero property violated with a:i
 - Preference for matching identical C over matching id. V cannot be expressed in a metric
 - triangle inequality violated with a:i:y
 - cf. labio-velars (double marked, close to both); also cf. j/df
- "just a stand-in for a more sophisticated, perhaps feature-based, system"
- Kondrak reports a good correlation between these trial-and-error costs and feature based Hamming distance, when the latter is an average over all sounds in the category

Armin Buch

Introduction

Alignmen

Phoneme similarity ALINE Evaluation

Identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Armin Buch

Introduction

feature name	а	\mathbf{b}	\mathbf{c}	$^{\rm d}$	e	\mathbf{f}	g	$^{\rm h}$	i	j	k	1	\mathbf{m}	\mathbf{n}	0	\mathbf{p}	\mathbf{r}	\mathbf{s}	\mathbf{t}	u	v	w	х	у	\mathbf{Z}	
tense	+	_	_	_	+	_	_	_	$^+$	_	_	_	—	_	$^+$	_	_	_	_	$^+$	_	+	_	+	_	Phoneme similarity
[spread glottis]	-	_	_	_	_	_	_	+	-	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	ALINE
[voice]	+	$^+$	_	$^+$	$^+$	_	$^+$	_	$^+$	$^+$	_	$^+$	$^+$	$^+$	$^+$	_	$^+$	_	_	$^+$	$^+$	$^+$	_	$^+$	+	Evaluation
[back]	+	_	_	_	_	_	$^+$	$^+$	_	_	$^+$	_	_	_	$^+$	_	_	_	_	$^+$	_	$^+$	$^+$	_	_	
coronal	-	_	$^+$	$^+$	_	_	_	_	_	$^+$	_	$^+$	_	$^+$	_	_	$^+$	$^+$	$^+$	_	_	_	_	_	+	
[continuant]	+	_	_	_	$^+$	$^+$	_	$^+$	$^+$	_	_	_		_	$^+$	_	$^+$	$^+$	_	$^+$	$^+$	$^+$	$^+$	$^+$	+	COGIT
[high]	-	_	$^+$	_	_	_	$^+$	_	$^+$	$^+$	$^+$	_	_	_	_	_	_	_	_	$^+$	_	$^+$	$^+$	$^+$	_	
[strident]	-	-	$^+$	_	-	$^+$	-	-	-	$^+$	_	-	_	_	-	_	_	$^+$	_	_	$^+$	_	-	_	+	
[round]	-	_	-	_	_	-	_	_	-	_	_	_	—	_	$^+$	_	_	_	_	$^+$	_	$^+$	_	_	_	
[syllabic]	+	_	-	_	$^+$	-	_	_	$^+$	_	_	_	_	_	$^+$	_	_	_	_	$^+$	_	_	_	_	_	CORDI
[obstruent]	-	$^+$	$^+$	$^+$	-	$^+$	$^+$	$^+$	_	$^+$	$^+$	-	—	-	_	$^+$	_	$^+$	$^+$	_	$^+$	-	$^+$	-	+	Evaluation
[nasal]	-	_	_	_	_	_	_	_	_	_	_	_	$^+$	$^+$	_	_	_	_	_	_	_	_	_	_	_	Outlook
[consonantal]	-	$^+$	$^+$	$^+$	_	$^+$	$^+$	$^+$	_	$^+$	$^+$	$^+$	$^+$	$^+$	_	$^+$	$^+$	$^+$	$^+$	_	$^+$	_	$^+$	_	+	
[low]	+	_	_	_	_	_	_	$^+$	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
anterior	-	$^+$	$^+$	$^+$	_	$^+$	_	_	_	$^+$	_	$^+$	$^+$	$^+$	_	$^+$	$^+$	$^+$	$^+$	_	$^+$	_	_	_	+	
[distributed]	+	$^+$	$^+$	$^+$	$^+$	_	$^+$	$^+$	$^+$	_	$^+$	_	$^+$	_	$^+$	$^+$	_	$^+$	$^+$	$^+$	_	$^+$	$^+$	$^+$	+	
[delayed release]	-	_	$^+$	_	_	_	-	_	_	$^+$	_	_	-	-	_	_	_	_	_	_	_	-	_	_	_	

Table 4.20: Feature vectors adopted from Hartman [1981].

Phoneme similarity 3

. i

Armin Buch

Introduction

Phoneme similarity ALINE Evaluation

Identification of cognates

Evaluation

Identification of sound correspondences CORDI Evaluation

Outlook

Table 3.21. A partial distance matrix based on binary leading	Table	4.21:	А	partial	distance	matrix	based	on	binary	feature	s.
---	-------	-------	---	---------	----------	--------	-------	----	--------	---------	----

		а	1	У	п	р	1		
a		0	3	4	10	9	8	10	
i		3	0	1	9	8	7	9	
у	,	4	1	0	8	7	6	8	
n	۱ I	10	9	8	0	5	2	6	
р	,	9	8	7	5	0	5	3	
r		8	7	6	2	5	0	4	
\mathbf{s}		10	9	8	6	3	4	0	

**

Th.

....

61

...

Problems with binary features

- Binary features are interpreted within a language
- they do not always reflect confusability / possible historical change:
- $\blacktriangleright \ /j/ \rightarrow /d J/$ is likely, but the two are very dissimilar

Armin Buch

Introduction

Alignmen

Phoneme similarity ALINE Evaluation

Identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Multi-valued features

- e.g. with values within [0,1]
- possibly also weighted features (place > manner of articulation)
- efforts at the time (Nerbonne & Heringa 1997) found worse alignments with better weightings
- still, beneficial weightings might be derived automatically
- possibly today with more hand-annotated cognate data

Armin Buch

Introduction

Alignmen

Phoneme similarity ALINE

Identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Feature name	Phonological term	Numerical value]	Armin Buch
Place	[bilabial]	1.0		
	[labiodental]	0.95		
	[dental]	0.9		Phoneme similarity
	[alveolar]	0.85		ALINE Evaluation
	[retroflex]	0.8		
	[palato-alveolar]	0.75		cognates
	[pal at al]	0.7		Evaluation
	[velar]	0.6		
	[uvular]	0.5		correspondences
	[pharyngeal]	0.3		CORDI Evaluation
	[glottal]	0.1		Outlook
Manner	[stop]	1.0		
	[affricate]	0.9		
	[fricative]	0.8		
	[approximant]	0.6		
	[high vowel]	0.4		
	[mid vowel]	0.2		
	[low vowel]	0.0		
High	[high]	1.0		

Armin Buch

Alignmen

Phoneme similarity ALINE

Identification of cognates

COGIT

Evaluation

Identification of sound correspondences CORDI Evaluation

Outlook

Syllabic	5	Place	40
Voice	10	Nasal	10
Lateral	10	Aspirated	5
High	5	Back	5
Manner	50	Retroflex	10
Long	1	Round	5

Table 4.27: Features used in ALINE and their salience settings.

Phoneme similarity 4

Armin Buch

Introduction

Alignmen

Phoneme similarity INE Juation ntification of mates

luation

ntification of nd respondences RDI uation

	1						
	а	i	у	n	р	r	s
a	15	8	2	-50	-56	-28	-40
i	8	15	10	-26	-32	-4	-16
у	2	10	15	-21	-27	1	-11
n	-50	-26	-21	35	9	-7	5
р	-56	-32	-27	9	35	-13	19
r	-28	-4	1	-7	-13	35	3
\mathbf{s}	-40	-16	-11	5	19	3	35

Table 4.29: A partial similarity matrix based on multivalued features with diversified salience values.

Kondrak's ALINE algorithm

- similarities, not distances
- best alignments within a threshold ϵ
- local alignments; this replaces gap functions
- indels, substitution, expansion, compression
- transpositions are rare and too irregular
- multivalued features

Armin Buch

Introduction

Alignment Phoneme similarity

ALINE

dentification cognates

COGIT

Evaluation

Identification of sound correspondences CORDI Evaluation

1	algorithm Alignment	Armin Buch
1	inpute abaratic stainer a and a	
2	input: phonetic strings x and y	
3	output: alignment of x and y	
4	define $S(i, j) = -\infty$ when $i < 0 \text{ or } j < 0$	
5		Phoneme similarity
6	for $i := 0$ to $ x $ do	Evaluation
7	S(i, 0) := 0	
8	for $j := 0$ to $ y $ do	
9	S(0, j) := 0	COGIT
10	for $i := 1$ to $ x $ do	Evaluation
11	for $j := 1$ to $ y $ do	
12	S(i,j) := max(
13	$S(i-1,j) + \sigma_{skip}(x_i),$	CORDI
14	$S(i, j-1) + \sigma_{skip}(y_j),$	Evaluation
15	$S(i-1, j-1) + \sigma_{sub}(x_i, y_j),$	Outlook
16	$S(i-1, j-2) + \sigma_{exp}(x_i, y_{j-1}y_j),$	
17	$S(i-2, j-1) + \sigma_{exp}(x_{i-1}x_i, y_j),$	
18	0)	
19		
20	$T := (1 - \epsilon) \cdot \max_{i,j} S(i,j)$	
21		
23	for $i \leftarrow 1$ to $ x $ do	
24	for $j \leftarrow 1$ to $ y $ do	
25	if $S(i, j) > T$ then	
26	$\operatorname{Retrieve}(i, j, 0)$	

$$O_{skip}(P) = O_{skip}$$

 $\sigma_{-\nu-}(n) =$

$$\sigma_{sub}(p,q) ~=~ C_{sub} - \delta(p,q) - V(p) - V(q)$$

$$\sigma_{exp}(p, q_1q_2) = C_{exp} - \delta(p, q_1) - \delta(p, q_2) - V(p) - max(V(q_1), V(q_2))$$

where

$$V(p) = \begin{cases} 0 & \text{if } p \text{ is a consonant} \\ C_{nwl} & \text{otherwise} \end{cases}$$

$$\delta(p,q) \ = \ \sum_{f \in R} \operatorname{diff}(p,q,f) \times \operatorname{salience}(f)$$

where

$$R = \begin{cases} R_C & \text{if } p \text{ or } q \text{ is a consonant} \\ R_V & \text{otherwise} \end{cases}$$

Table 4.26: Scoring functions.

Armin Buch

ALINE

Annotations to ALINE

- diff(p,q,f) returns the difference between p and q for feature f
- Vowel features: syllabic, nasal, retroflex, high, back, round, long
- Consonant features: syllabic, manner, voice, nasal, retroflex, lateral, aspirated, place & double (= secondary place)
- Double leads to violation of triangle inequality, because the closest is taken

Armin Buch

Introduction

Alignment Phoneme similarity ALINE

Evaluation

Identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Evaluation

- 82 words (from Covington 1996), manually coded for cognacy
- Spanish–French, English–German, English–Latin, Fox–Menomini, and some solitary examples
- This was the best data available
- And still it may contain errors, and it has too many too easy pairs
- ► Furthermore, it's used for development and for evaluation
- ALINE outperforms Covington's method, but still has errors

Armin Buch

Introduction

Alignment Phoneme similarity ALINE

Evaluation

Identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

	Ca	vin	gton	's al	lignn	nent.	s	A	LIN	E's	alig	ime	ents	
$three:tr \bar{es}$	θ	r	i	у					θ	r	iy			
	t	r	ē	s					t	r	ē		s	Phoneme similarity ALINE Evaluation
blow:flare	f	1	ā	r	o e	w -			b f	1	o ā		w re	
full:plēnus	f p	- 1	ē	- n	u u	l s			f p	u -	1 1		ēnus	COGIT Evaluation Identification
fish:piscis	f p	- i	s	- k	i i	š			f p	i i	š s		kis	correspondent CORDI Evaluation
I:ego	- e	- g	a o	у -					ay e		go			Outlook
tooth: dentis	- d	ē	- n	t t	u i	w -	$_{\rm s}^{\theta}$	der	 n	t t	uw i	$_{\rm s}^{\theta}$		

Armin Buch

Table 4.33: Examples of alignments of English and Latin cognates.

Results

- ALINE achieves 95% accuracy compared to Kondrak's manual alignments
- it outperforms earlier approaches
- 'tooth' cannot be correctly aligned without referring to regular sound changes

$$\parallel t uw - \theta \parallel$$

 $\parallel d e n t \parallel is$

Table 4.34: The correct alignment of tooth:dentis.

Armin Buch

Introduction

Alignment

honeme similarity LINE

Evaluation

Identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Not everything is a cognate

Armin Buch

Introduction

Alignment

Phoneme similari ALINE Funduation

Identification of cognates
COGIT Evaluation
sound correspondences
CORDI

Evaluatio

Outlook

Spanish	English	Classification
sal	salt	genetic cognates
$su\acute{e}ter$	sweater	direct borrowing
$ambici\acute{o}n$	ambition	borrowing from a third language
mucho	much	chance similarity
carpeta 'folder'	carpet	"false friends"
cuclillo	cuckoo	onomatopoeic words
mamá	mommy	nursery words

Table 5.1: Examples of similar words in Spanish and English.

Cognate: a working definition

- For the present purposes, everything with similar meaning and form is a cognate
- Useful for unsupervised methods, including Greenberg's mass lexical comparison
- Better, and still to be established: automatically finding sound correspondences, and defining cognates accordingly
- Best data available on a large scale: transcribed word lists with glosses

Armin Buch

Introduction

Alignment Phoneme similarity ALINE Evaluation

Identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Example word list 1

$\bar{a}nisk\bar{o}h\bar{o}\check{c}ikan$	string of beads tied end to end
asikan	sock, stocking
$kam\bar{a}makos$	butterfly
kostaciwin	terror, fear
$misiy\bar{e}w$	large partridge, hen, fowl
$nam\bar{e}hpin$	wild ginger
na pakihtak	board
$t\bar{e}ht\bar{e}w$	green toad
$wayak\bar{e}skw$	bark

Armin Buch

Introduction

Alignment Phoneme similarity ALINE Evaluation

Identification of cognates COGIT Evaluation Identification of sound

CORDI Evaluation

Outlook

Table 5.2: An excerpt from a Cree vocabulary list [Hewson, 1999].

Example word list 2

Armin Buch

Introduction

Alignment Phoneme similarity ALINE Evaluation

Identification of cognates COGIT Evaluation Identification of

sound correspondences CORDI Evaluation

Outlook

āšikan	dock, bridge
$anaka' \bar{e}kkw$	bark
kipaskosikan	medicine to induce clotting
$kott\bar{a}\check{c}\bar{i}win$	fear, alarm
mēmīkwan'	butterfly
$misiss \bar{e}$	turkey
$nam\bar{e}pin$	sucker
na pakissakw	plank
$t\bar{e}nt\bar{e}$	very big toad

Table 5.3: An excerpt from an Ojibwa vocabulary list [Hewson, 1999].

Kondrak's program COGIT

- An algorithm to identify cognates
- It needs to evaluate phonetic similarity (via ALINE) and semantic similarity
- Phonetic similarity is normalized by dividing by the self-similarity of the more self-similar word¹
- Semantic similarity via WordNet
- Identity of glosses is in general not enough

Armin Buch

Introduction

Alignment

Phoneme similarit ALINE

dentification of cognates

COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Problems in establishing semantic similarity

- Spelling errors / variants
- Inflection
- Modifiers: determiners, adjectives, compounds, complements, adjuncts
- synonymy ('tomb', 'grave')
- Semantic changes ('fowl', 'turkey'; 'broth', 'grease')

Armin Buch

Introduction

Alignment

honeme similarit ALINE

Evaluation

Identification of cognates

COGIT

Evaluation

Identification of sound correspondences CORDI Evaluation

Addressing these problems

- Spelling correction (even if manually)
- ▶ Removal of stop words ('a kind of', ...)
- Extraction of keywords (syntactic heads heuristically found after POS-tagging)
- Lemmatization
- Employing WordNet

Armin Buch

Introduction

Alignment

Phoneme similarit ALINE

Identification of cognates

COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

WordNet relations

Type	Name	Example	Inverse of
hypernymy	IS-A	$bird \rightarrow animal$	hyponymy
hyponymy	SUBSUMES	$bird \rightarrow robin$	hypernymy
meronymy	PART-OF	$beak \rightarrow bird$	holonymy
holonymy	HAS-A	$tree \rightarrow branch$	meronymy
antonymy	COMPLEMENT-OF	$leader \leftrightarrow follower$	itself

Table 5.4: The main lexical relations between nouns in WordNet.

Armin Buch

Introduction

Alignment

Phoneme similarit ALINE

Lyanuation

Identification of cognates

COGIT

Identification of sound correspondences CORDI Evaluation

Semantic shift

- generalization & specialization ('deer', 'Tier')
- melioration (Ancient Greek 'guna' "woman", 'queen')
- pejoration ('Frau'; 'Weib')
- metaphor ('star')
- metonymy (attribute for whole): 'crown'
- synechdoche (pars pro toto)
- \Rightarrow some of them happen along WordNet's semantic relations

Armin Buch

Introduction

Alignment Phoneme similarit ALINE

dentification of cognates

COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Weighing semantic similarity

Rank	Similarity level	Score
1	gloss identity	1.00
2	gloss synonymy	0.70
3	keyword identity	0.50
4	gloss hypernymy	0.50
5	keyword synonymy	0.35
6	keyword hypernymy	0.25
7	gloss meronymy	0.10
8	keyword meronymy	0.05
9	none detected	0.00

Table 5.8: Semantic similarity levels.

WordNet paths longer than 1 are considered useless

Armin Buch

Example calculation

- COGIT's similarity score is a weighted sum of the phonetic and semantic similarity
- The weight is empirically set to 80% phonology, 20% semantics
- if it exceeds a threshold, record the pair as a cognate candidate
- Example: Cree wahkwa 'a lump of roe', Ojibwa wakk 'fish eggs'
 - remove determiner
 - identify keywords (lump, roe; fish, eggs)
 - lemmatize (egg)
 - hypernymy (roe IS-A egg) beats meronymy (roe PART-OF fish): 0.25
 - phonetic score 0.4167
 - overall score 0.3834

Armin Buch

Introduction

Alignment

Phoneme similarit ALINE Evaluation

dentification of cognates

COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Evaluation

- evaluated on a set of dictionaries of North American languages, with its own inconsistencies
- weighting experimentally set to 80–20, so semantics isn't a strong indicator
- no threshold set: it is a trade-off between recall and precision
- precision levels reported as an average over 0%, 10%, ...100% recall thresholds
- better than older methods

Armin Buch

Introduction

Alignment

Phoneme similarit ALINE

identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

The role of semantics

- gloss identity holds for 62.7% of all cognates (no special method needed at all)
- keyword identity holds for 12%
- others insignificant
- 19.3% are not connected via their glosses at all (by this method)
- ► No word sense disambiguation in the process → false positives via WordNet
- imperfect keyword extraction
- missing entries in WordNet

Armin Buch

Introduction

Alignment

honeme similarit ALINE

dentification of cognates cogr

Evaluation

Identification of sound correspondences CORDI Evaluation

Identity vs. correspondence

- English 'have' is not cognate with Latin 'habere', but with 'capire'
- ▶ by regular sound changes (Grimm's Law, ...)
- Is automatic identification of correspondences possible?
- Is it possible on data un-annotated for actual cognacy?
- That is, are correspondences stable enough to be visible under noise?

Armin Buch

Introduction

Alignment Phoneme similarity ALINE Evaluation

Identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Armin Buch

Introduction

Alignment

Phoneme similarit ALINE

Identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

English Latin English Latin d e k e 'ten' 'two' tεn tū duo 'eat' tūθ 'tooth' īt. e d $d \in n t$ n i d 'nest' 'knee' $\mathbf{n} \in \mathbf{s} \mathbf{t}$ nī g e n nεfjū nepot 'nephew' fnt реd 'foot' fōm spum 'foam' wulf lup 'wolf' $\theta \mathbf{r} \overline{1}$ tre 'three' $\mathbf{r} \, \bar{\mathbf{u}} \, \mathbf{t}$ radik 'root' 'sit' kord 'heart' sıt s e d hart 'horn' 'brother' horn korn braðar fratr

Table 6.1: Examples of English-Latin cognates exhibiting correspondences.

Phoneme vs. word alignment

- Segment alignment is well-known from syntax
- Kondrak relies on Melamed's (2000) algorithm
- first, initialize correspondence likelihoods using co-occurrence counts (G² statistics, which I will not try to explain here)
- greedily link words 1-to-1, highest scores first
- re-estimate likelihoods and repeat (serves to prune accidental or indirect co-occurrences)
- extended for contiguous sequences being treated as one segment (many-to-one, one-to-many, many-to-many)

Armin Buch

Introduction

Alignment

Phoneme similarit ALINE Evaluation

Identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation

Kondrak's CORDI algorithm

- no crossing links expected, so the greedy aligner is replaced with a variant of the standard aligner
- half-local (don't consider word endings)
- threshold on links: Don't match everything even if you could
- negative weight on indels
- positive weight on each link

Armin Buch

Introduction

Alignment

Phoneme similarit ALINE Furduation

Identification of cognates cogrt

Evaluation

Identification of sound correspondences

CORDI

Evaluatio

Evaluation 1

- 112 English-Latin cognate pairs
- Now, tooth:dent can be aligned correctly
- y:w is claimed to result from the diphtong [ay]

	cooc	links	score	valid
r:r	28	28	193.1	yes
n:n	23	23	158.6	yes
1:1	20	20	138.0	yes
s:s	17	17	117.3	yes
m:m	15	15	103.5	yes
f:p	13	13	89.7	yes^{\dagger}
t:d	11	11	75.9	yes^{\dagger}
k:g	8	8	55.1	yes^{\dagger}
y:w	6	6	41.4	no
b:f	6	6	41.4	yes^{\dagger}
h:k	5	5	34.5	yes^{\dagger}
θ:t	4	4	27.6	yes^{\dagger}

Armin Buch

Introduction

Alignment Phoneme similarity ALINE Evaluation Identification of gnates DGIT aluation entification of und rrespondences DRDI aluation

ıtlook

Table 6.2: English–Latin correspondences discovered by Method D in pure cognate data. The correspondences marked with a † are predicted by Grimm's Law.

Noise

- pure cognate data is hard to get
- 200 words (English/Latin), out of which only 29% are cognates
- highly robust

	cooc	links	score	valid	
r:r	26	24	158.7	yes	
n:n	24	23	154.2	yes	
t:d	18	18	122.4	yes	
k:k	12	11	72.5	yes	
s:s	11	10	65.7	yes	
f:p	9	9	61.2	yes	
m:m	10	9	58.9	yes	
d:t	10	8	49.8	no	
1:1	14	9	49.7	yes	
h:k	7	7	47.6	yes	

Armin Buch

Introduction

Alignment

honeme similarit

Evaluation

Identification of

COGIT

luation

ntification of nd respondences RDI Juation

Table 6.4: English–Latin correspondences discovered by CORDI in noisy synonym data.

Figure 6.2: The Fox-Menomini consonantal correspondences determined by a linguist

Outlook

- A phoneme-by-phoneme correspondence likelihood table derived from actual (cognate) data wasn't available at the time
- Automatic reconstruction of proto-forms is still a hot topic

Armin Buch

Introduction

Alignment Phoneme similarity ALINE Evaluation

Identification of cognates COGIT Evaluation

Identification of sound correspondences CORDI Evaluation