Bioinformatische Methoden in der Historischen Linguistik
 Aggregating word alignments

Gerhard Jäger

8. Februar 2013
Forum Scientiarum

From words to languages

- alignment methods give us a measure of distance/similarity between individual words
- these need to be aggregated to get a distance measure between languages
- baseline approach to compute distance between L_{1} and L_{2} :
- compute Levenshtein distance between all 40 translation pairs from L_{1} and L_{2}

$$
d\left(L_{1}, L_{2}\right)=\sum_{i=1}^{N} \frac{d\left(w_{i}^{L_{1}}, w_{i}^{L_{2}}\right)}{N}
$$

where N is the number of concepts where we have a word from both languages

- substantial number of missing data; N is often much smaller than 40

Missing data

- on average we actually only have 35.1 words per language
- if attested loans are excluded, the number goes down to 34.8

number of shared items per language pair

Evaluation

Evaluation

- basic problem here: the smaller the sound inventories of the languages compared, the higher is the probability of false positives

Benchmark: LDND measure

- Wichmann et al.: doubly normalized Levenshtein distance (Levenshtein Distance Normalized and Divided)
- normalization for word length

$$
\begin{equation*}
\operatorname{nld}(x, y) \doteq \frac{d_{\text {Lev }}(x, y)}{\max (I(x), I(y))} \tag{1}
\end{equation*}
$$

- normalization for language specific patterns (including sound inventory size):
- normalization factor $1 / \mu$
- $\mu_{L_{1}, L_{2}}$: mean of $\left\{n l d(x, y) \mid x \in L_{1}, y \in L_{1},\|x\| \neq\|y\|\right\}$

$$
\begin{aligned}
\operatorname{ldnd}\left(x, y, L_{1}, L_{2}\right) & \doteq \frac{n / d(x, y)}{\mu_{L_{1}, L_{2}}} \\
\operatorname{ldnd}\left(L_{1}, L_{1}\right) & \doteq \frac{\sum_{x \in L_{1}, y \in L_{2}}\left\{\operatorname{ldnd}\left(x, y, L_{1}, L_{2}\right):\|x\|=\|y\|\right\}}{\#\{x, y:\|x\|=\|y\|\}}
\end{aligned}
$$

Benchmark: LDND measure

English / Swedish

	Ei	yu	wi	w3n	tu	fiS	\ldots
yog	1	$2 / 3$	1	1	1	1	
du	1	$1 / 2$	1	1	$1 / 2$	1	
vi	$1 / 2$	1	$1 / 2$	1	1	$2 / 3$	
et	1	1	1	1	1	1	
tvo	1	1	1	1	$2 / 3$	1	
fisk	$3 / 4$	1	$3 / 4$	1	1	$1 / 2$	

- average LDN along diagonal: 0.56
- average LDN off diagonal: 0.91
- LDND: $0.56 / 0.91=0.61$

Benchmark: LDND measure

A bit of information theory

> Swedish fisk $=$ English fish?
> Turkish dört $=$ English dirt?

- first guess is good because the words sound similars and the languages are closely related
- second guess is bad (and wrong) even though the words sound similar because the languages are not related
- If two languages are related, knowing a word from one language reduces the uncertainty about its form in the other language
- Hypothesis: degree of similarity between two languages \approx average amount of information that the form of a word in one language carries about the form of its translation into the other language

English and Swedish again

- Histogramm: off-diagonal distances
- red line: distance fiS \sim fisk (=4.3)
- relative frequency of off-diagonal entries $\leq 4.3: 0.004$
- can be interpreted as p-value for the null hypothesis that the two words are not cognates
- $-\log _{2}(0.004)=7.9$ bit: amout of information that [fisk] carries about [fiS], given the general pattern of phonotactic similarities between unrelated English and Swedish words

Information theoretic estimate of language similarity

- similarity between two languages: average amount of information that a word from one language carries about its translation
- formally: average binary logarithm of the p-values for all Swadesh items in the data base

English/Swedish

English/Turkish

Information theoretic estimate of language similarity

- formally:
- let $d\left(w_{i}^{L_{1}}, w_{j}^{L_{2}}\right)$ be the normalized Levenshtein distance of the i-th word from L_{1} and the j-th word from L_{2} and N the number of shared concepts of L_{1} and L_{2}.

$$
p v\left(w_{i}^{L_{1}}, w_{i}^{L_{2}}\right)=\frac{\left|\left\{(j, k) \mid i \neq j, d\left(w_{j}^{L_{1}}, w_{k}^{L_{2}}\right)<d\left(w_{i}^{L_{1}}, w_{i}^{L_{2}}\right)\right\}\right|}{N(N-1)}
$$

How to deal with missing data

- for unrelated languages, $p v\left(w_{i}^{L_{1}}, w_{i}^{L_{2}}\right)$ is just a random variable
- approximately exponentially distributed (with mean $=\frac{1}{\log 2}$):

How to deal with missing data

- the mean of N exponentially distributed variables is approximately normally distributed ${ }^{1}$
- variance depends on N though

[^0]
How to deal with missing data

- let x_{1}, \ldots, x_{N} be independent identically distributed random variables with standard deviation σ

$$
\operatorname{sd}\left(\frac{1}{N} \sum_{i=1}^{N} x_{n}\right)=\frac{\sigma}{\sqrt{N}}
$$

- both mean and variance of the negative (binary) logarithms of the individual p-values are $\frac{1}{\log 2}$
- so the following function is standard normally distributed for unrelated languages

$$
\log 2 \sqrt{N}\left(\sum_{i=1}^{N} p v\left(w_{i}^{L_{1}}, w_{i}^{L_{2}}\right)-\frac{1}{\log 2}\right)
$$

How to deal with missing data

- the following function gives the probability that the degree of similarity that we find between L_{1} and L_{2} is due to chance:

$$
d\left(L_{1}, L_{2}\right)=\operatorname{erfc}\left(\log 2 \sqrt{N}\left(\sum_{i=1}^{N} p v\left(w_{i}^{L_{1}}, w_{i}^{L_{2}}\right)-\frac{1}{\log 2}\right)\right)
$$

- as the complementary error function erfc is monotonically decreasing, we can define the similarity betwen L_{1} and L_{2} as

$$
\operatorname{sim}\left(L_{1}, L_{2}\right)=\sqrt{N}\left(\sum_{i=1}^{N} p v\left(w_{i}^{L_{1}}, w_{i}^{L_{2}}\right)-\frac{1}{\log 2}\right)
$$

Comparing unweighted and weighted alignment

- same procedure for aggregating word-alignments to language similarities can be applied to weighted alignments
- some results

Levensthein:
German Swabian Cimbrian Dutch Hindi PIE Latin Hungarian Finnish Turkish

German	45.7	35.2	26.7	25.8	10.1	14.9	10.9	6.8	6.0	6.9
Swabian	35.2	46.5	22.0	21.8	10.0	13.0	11.5	7.2	6.8	6.1
Cimbrian	26.7	22.0	42.3	20.7	11.8	10.7	9.8	5.9	6.7	6.1
Dutch	25.8	21.8	20.7	45.7	9.5	14.0	11.2	6.9	5.7	5.1
Hindi	10.1	10.0	11.8	9.5	45.7	14.4	12.1	6.5	7.1	7.5
PIE	14.9	13.0	10.7	14.0	14.4	46.5	19.6	8.1	6.4	5.2
Latin	10.9	11.5	9.8	11.2	12.1	19.6	46.5	8.0	6.1	6.9
Hungarian	6.8	7.2	5.9	6.9	6.5	8.1	8.0	42.7	11.5	8.5
Finnish	6.0	6.8	6.7	5.7	7.1	6.4	6.1	11.5	37.9	7.4
Turkish	6.9	6.1	6.1	5.1	7.5	5.2	6.9	8.5	7.4	45.7

weighted alignment:
German Swabian Cimbrian Dutch Hindi PIE Latin Hungarian Finnish Turkish

German	42.3	36.3	31.6	29.0	12.0	16.9	12.2	7.5	7.2	6.3
Swabian	36.3	42.3	27.8	26.0	12.4	15.5	12.4	8.2	7.1	6.2
Cimbrian	31.6	27.8	40.8	24.8	13.0	12.8	10.9	7.5	7.5	6.4
Dutch	29.0	26.0	24.8	41.4	11.8	16.7	12.7	7.5	5.9	5.2
Hindi	12.0	12.4	13.0	11.8	42.9	14.6	13.3	8.1	6.9	7.2
PIE	16.9	15.5	12.8	16.7	14.6	45.8	22.6	8.3	7.7	5.2
Latin	12.2	12.4	10.9	12.7	13.3	22.6	44.2	7.4	6.3	7.5
Hungarian	7.5	8.2	7.5	7.5	8.1	8.3	7.4	42.9	12.3	9.0
Finnish	7.2	7.1	7.5	5.9	6.9	7.7	6.3	12.3	34.3	7.0
Turkish	6.3	6.2	6.4	5.2	7.2	5.2	7.5	9.0	7.0	44.2

Comparison

- applying Neighbor Joining phylogeny induction

Levenshtein alignment
weighted alignment

The Balto-Slavic languages: Levenshtein alignment

The Balto-Slavic languages: Weighted alignment

The Slavic languages: Ethnologue classification

The Romance languages: Levenshtein alignment

The Romance languages: Weighted alignment

The Romance languages: Ethnologue classification

The Germanic languages: Levenshtein alignment

The Germanic languages: Weighted alignment

The Germanic languages: Ethnologue classification

Tree distances：Robinson－Fould

The symmetric difference metric

Partitions
\｛ADF｜BCEG\}
\｛DF｜ABCEG\}
\｛BC｜ADEFG\}
Partitions
\｛ADF｜BCEG\}
\｛AD｜BCEFG \}
\｛BC｜ADEFG $\}$ \｛EG｜ABCDF\}

The symmetric difference is the number of partitions that are in one but not both of these lists，in this case 3 ．

Tree distances: Robinson-Fould

- normalized RF-distance: number of different partitions, divided by the total number of partitions in tree $1+$ total number of partitions in tree 2
- in the example: $\frac{3}{4+3}$

Tree distances: Quartet distance

- for a quartet of species, there are four possible tree topologies, 3 butterflies and 1 star

Tree distances: Quartet distance

- quartet distance between two unrooted trees is the number quartets that have a different topology in the two trees

Tree distances: Quartet distance

- $\binom{7}{4}=35$ quartets in total
- 25 are shared, 10 are different
- normalized qdist: $\frac{10}{35}$

Tree distances

- Robinson-Fould distance is more intuitive, but quartet distance is more robust

- Robinson-Fould distance: 6; normalized $\frac{6}{8}=0.75$
- quartet distance: 23 ; normalized $\frac{23}{35} \approx 0.66$

Expert trees

- quality of phylogenetic inference can be evaluated by comparison to expert classifications
- three commonly used classification systems:

1. two-level taxonomy from WALS (World Atlas of Language Structure)
2. multi-level taxonomy from Ethnologue
3. more conservative multi-level taxonomy according to Harald Hammarström

- all three are part of the meta-data in ASJP

Expert trees and tree distances

- most nodes in the expert trees are multiple branching
- trees that are produced by phylogenetic software are always binary branching
- this leads to misleadingly high tree distances

Expert trees and tree distances

- suppose the left tree is extracted from the data and the right one is an expert tree

- as the left tree correctly captures all taxa in the right tree, this seems to be a perfect fit
- however:
- normalized Robinson-Fould distance: 0.33
- normalized quartet distance: 0.11

Expert trees and tree distances

- in practice
- 5,644 languages in ASJP (excluding creoles etc.)
- there 5,641 partitions in every inferred tree
- Ethnologue: 1,803 partitions
- WALS: 391 partitions
- Hammarström: 1,735 partitions
- Robinson-Fould distance to WALS tree will be at least 0.68 , no matter how well the algorithm performs
- minimum quartet distance: not easy to calculate, but also substantial

Measures of fit

- more realistic measures of goodness of fit:
- Robinson-Fould fit:
$\frac{\text { number of shared partitions }}{\text { total number of partitions in the expert tree }}$
- quartet fit:
number of shared butterflies total number of butterflies in the expert tree
- these measures are always between 0 and 1
- 1 means that all groupings from the expert classification are correctly recovered

Triplet fit

- pick a triplet of languages A, B, C which has a resolved tree structure $((A, B), C)$ according to the expert tree
- determine predicted distances:

$$
\begin{aligned}
d(\text { Swedish, English }) & =0.486 \\
d(\text { Swedish, Japanese }) & =0.905 \\
d(\text { English, Japanese }) & =0.897
\end{aligned}
$$

- $\quad d(A, B)<\min (d(A, C), d(B, C)) \mapsto$ correct
- otherwise \mapsto incorrect
- triplet fit of a distance measure to an
resolved:

unresolved:
 expert tree: proportion of resolved triplets that come out correct

Triplet fit

- Wichmann et al. claim that 40 Swadesh items are enough; longer Swadesh lists lead to a decrease in quality according to their methods

- Note: More data is better than less data.

Some results

- compute 5,644 $\times 5,644$ distance matrices based on Levenshtein alignment vs. weighted alignment
- perform Neighbor-Joining algorithm
- measure fit to expert trees
- Robinson-Fould fit:

	Levenshtein	weighted	Aline
WALS	0.624	0.639	0.622
Ethnologue	0.485	0.490	0.477
Hammarström	0.457	0.473	0.447

Some results

- quartet fit:

	Levenshtein	weighted	ALINE
WALS	0.869	0.886	0.855
Ethnologue	0.839	0.857	0.824
Hammarström	0.890	0.896	0.891

Some results

- triangle fit:

	Levenshtein	weighted	ALINE
WALS	0.8816	0.9055	0.8876
Ethnologue	0.7733	0.7980	0.7734
Hammarström	0.7670	0.7904	0.7699

Some results

- procedure: for $N=100,200,300, \ldots, 1,800$:
- pick N languages at random
- compute $N \times N$ distance matrices based on Levenshtein vs. weighted alignment
- perform Neighbor Joining algorithm
- measure fit to Hammarström expert tree
- Robinson-Fould fit:

Some results

- procedure: for $N=100,200,300, \ldots, 1,800$:
- pick N languages at random
- compute $N \times N$ distance matrices based on Levenshtein vs. weighted alignment
- perform Neighbor Joining algorithm
- measure fit to Hammarström expert tree
- quartet fit:

Some results

- difference between weighted alignment and Levenshtein alignment for the same data set
- Robinson-Fould fit
qdist-fit: difference between weighted and unweighted alignment

- quartet fit

RF-fit: difference between weighted and unweighted alignment

$\mu=0.023$

[^0]: ${ }^{1}$ Strictly speaking, it is a Erlang distribution, but for $N>10$ or so, a normal distribution is a reasonable approximation.

